当前位置: X-MOL 学术Exp. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer characteristics in a rotating wedge-shaped ribbed trailing edge with impingement jet
Experimental Heat Transfer ( IF 3.5 ) Pub Date : 2020-01-15 , DOI: 10.1080/08916152.2020.1713256
Hongwu Deng 1 , Jiasen Wang 1 , Lei Bai 2 , Jianqin Zhu 1
Affiliation  

ABSTRACT The effect of impingement jet on heat transfer in a rotating wedge-shaped ribbed trailing edge was experimentally investigated in this study. The inlet Reynolds number varied from 10000 to 61000, and rotation number from 0.06 to 0.16. Four different impingement structures (angle, diameter and number of impingement jet holes) were selected for investigation in non-rotating state, whereas the basic model structure was explored under rotation state. The heat transfer inside the channel and at the slots was analyzed in detail. The results show that the heat transfer at the leading edge of L-after jet region (the impingement surface) is significantly stronger than that of T-after jet region. Variation of impingement structures has altered the jet Reynolds number. Specifically, when the hole diameter narrowed, the jet Reynolds number increased by 30%, and the heat transfer of L-after jet by 10%. As the number of holes increased, the distribution of mass flow was uneven. When trailing edge acted as the impingement target surface, the heat transfer of trailing edge surface was close to that of the leading edge surface. The effect of rotation on heat transfer was concentrated on inlet region and high-radius region. Enhancement of inlet region led to reduction of other positions (especially for high-radius regions).

中文翻译:

带冲击射流的旋转楔形带肋后缘的传热特性

摘要 本研究通过实验研究了冲击射流对旋转楔形带肋后缘传热的影响。入口雷诺数从 10000 到 61000,转数从 0.06 到 0.16。选择四种不同的撞击结构(角度、直径和撞击喷射孔数量)在非旋转状态下进行研究,而在旋转状态下探索基本模型结构。详细分析了通道内部和缝隙处的热传递。结果表明,L-after射流前缘(撞击面)的传热明显强于T-after射流区。撞击结构的变化改变了射流雷诺数。具体而言,当孔径变窄时,射流雷诺数增加30%,L-after射流传热增加10%。随着孔数的增加,质量流量分布不均匀。当后缘作为撞击目标面时,后缘面的传热接近于前缘面。旋转对传热的影响主要集中在入口区域和高半径区域。入口区域的增强导致其他位置的减少(特别是对于高半径区域)。旋转对传热的影响主要集中在入口区域和高半径区域。入口区域的增强导致其他位置的减少(特别是对于高半径区域)。旋转对传热的影响主要集中在入口区域和高半径区域。入口区域的增强导致其他位置的减少(特别是对于高半径区域)。
更新日期:2020-01-15
down
wechat
bug