当前位置: X-MOL 学术Robotica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Systematic Approach for Accuracy Design of Lower-Mobility Parallel Mechanism
Robotica ( IF 2.7 ) Pub Date : 2020-02-05 , DOI: 10.1017/s0263574720000028
Wenjie Tian , Ziqian Shen , Dongpo Lv , Fuwen Yin

SUMMARYGeometric accuracy is a critical performance factor for parallel robots, and regardless of error compensation, accuracy design or tolerance allocation is another way to ensure the pose accuracy of a robot at design stage. A general method of both geometric error modeling and accuracy design of lower-mobility parallel mechanisms is presented. First, a general approach for error modeling of lower-mobility parallel mechanism is proposed based on screw theory, and then the geometric errors affecting the compensatable and uncompensatable accuracy of the end-effector are separated using the properties of dual vector space. The pose error aroused by compensatable geometric errors can be compensated via kinematic calibration, while the uncompensatable geometric errors should be minimized during the manufacturing and assembly processes. Based on that, the tolerance allocation method is presented, giving each uncompensatable geometric error a proper tolerance by the use of reliability theory. Compared with the traditional tolerance allocation method, the advantages of the proposed method are as follows: the number of geometric errors to be allocated is greatly reduced; the results of serialized tolerance allocation can be obtained according to different reliability indices of pose accuracy of end-effector for designers to choose; on the premise of guaranteeing the same pose accuracy of end-effector, the allocated tolerances are loose and easy to realize. Finally, the proposed methods are successfully applied to an R(2-RPS&RP)&UPS lower-mobility parallel robot, and the effectiveness and practicability of the proposed method are verified.

中文翻译:

低流动性并联机构精度设计的系统方法

摘要几何精度是并联机器人的关键性能因素,无论误差补偿、精度设计还是公差分配,都是在设计阶段保证机器人位姿精度的另一种方式。提出了一种低机动并联机构的几何误差建模和精度设计的通用方法。首先,提出了一种基于螺旋理论的低迁移率并联机构误差建模的通用方法,然后利用对偶向量空间的性质分离了影响末端执行器可补偿和不可补偿精度的几何误差。可补偿几何误差引起的位姿误差可以通过运动学校准进行补偿,而在制造和装配过程中应尽量减少不可补偿的几何误差。在此基础上,提出了容差分配方法,利用可靠性理论为每个不可补偿的几何误差赋予了适当的容差。与传统的公差分配方法相比,该方法的优点是:要分配的几何误差数量大大减少;根据末端执行器位姿精度的不同可靠性指标,可以得到系列化公差分配的结果,供设计人员选择;在保证末端执行器相同位姿精度的前提下,分配的公差宽松,易于实现。最后,所提出的方法成功地应用于 R(2-R 与传统的公差分配方法相比,该方法的优点是:要分配的几何误差数量大大减少;根据末端执行器位姿精度的不同可靠性指标,可以得到系列化公差分配的结果,供设计人员选择;在保证末端执行器相同位姿精度的前提下,分配的公差宽松,易于实现。最后,所提出的方法成功地应用于 R(2-R 与传统的公差分配方法相比,该方法的优点是:要分配的几何误差数量大大减少;根据末端执行器位姿精度的不同可靠性指标,可以得到系列化公差分配的结果,供设计人员选择;在保证末端执行器相同位姿精度的前提下,分配的公差宽松,易于实现。最后,所提出的方法成功地应用于 R(2-R 根据末端执行器位姿精度的不同可靠性指标,可以得到系列化公差分配的结果,供设计人员选择;在保证末端执行器相同位姿精度的前提下,分配的公差宽松,易于实现。最后,所提出的方法成功地应用于 R(2-R 根据末端执行器位姿精度的不同可靠性指标,可以得到系列化公差分配的结果,供设计人员选择;在保证末端执行器相同位姿精度的前提下,分配的公差宽松,易于实现。最后,所提出的方法成功地应用于 R(2-RS&RP)&US 低移动性并联机器人,验证了所提方法的有效性和实用性。
更新日期:2020-02-05
down
wechat
bug