当前位置: X-MOL 学术Microb. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
GATA-type transcription factor MrNsdD regulates dimorphic transition, conidiation, virulence and microsclerotium formation in the entomopathogenic fungus Metarhizium rileyi.
Microbial Biotechnology ( IF 5.7 ) Pub Date : 2020-05-12 , DOI: 10.1111/1751-7915.13581
Caiyan Xin 1 , Jie Yang 1 , Yingyu Mao 1 , Wenbi Chen 1 , Zhongkang Wang 2 , Zhangyong Song 1
Affiliation  

The GATA‐type sexual development transcription factor NsdD has been implicated in virulence, secondary metabolism and asexual development in filamentous fungi. However, little is known about its function in the yeast‐to‐hypha transition and in microsclerotium formation. In the current study, the orthologous NsdD gene MrNsdD in the entomopathogenic fungus Metarhizium rileyi was characterized. Transcriptional analysis indicated that MrNsdD was involved in yeast‐to‐hypha transition, conidiation and microsclerotium formation. After targeted deletion of MrNsdD, dimorphic transition, conidiation, fungal virulence and microsclerotium formation were all impaired. Compared with the wild‐type strain, the ΔMrNsdD mutants were hypersensitive to thermal stress. Furthermore, transcriptome sequencing analysis revealed that MrNsdD regulated a distinct signalling pathway in M. rileyi during the yeast‐to‐hypha transition or microsclerotium formation, but exhibited overlapping regulation of genes during the two distinct developmental stages. Taken together, characterization of the MrNsdD targets in this study will aid in the dissection of the molecular mechanisms of dimorphic transition and microsclerotium development.

中文翻译:

GATA型转录因子MrNsdD调节昆虫致病性真菌Metarhizium rileyi中的二态转变,构象,毒力和微核菌形成。

GATA型性发育转录因子NsdD与丝状真菌的毒力,次级代谢和无性发育有关。然而,人们对其在酵母菌到菌丝过渡和微菌核形成中的功能知之甚少。在目前的研究中,直系同源基因NSDD MrNsdD在昆虫病原真菌绿僵菌rileyi的特点。转录分析表明,MrNsdD参与了酵母菌到菌丝的过渡,分生和小菌核的形成。在有目的地删除MrNsdD之后,双态转化,分生孢子,真菌毒力和小菌核形成均受损。与野生型菌株相比,ΔMrNsdD突变体对热应激高度敏感。此外,转录组测序分析显示,MrNsdD调节在不同的信号传导途径M. rileyi酵母到菌丝过渡或microsclerotium形成期间,但表现出在两个不同的发育阶段重叠基因的调节。两者合计,这项研究中的MrNsdD目标的表征将有助于解剖双态转变和微菌核发展的分子机制。
更新日期:2020-05-12
down
wechat
bug