当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of the flow and heat transfer characteristics in advanced vortex combustor
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijthermalsci.2020.106459
Zhuoxiong Zeng , Heng Cheng , Zhikai Wang

Abstract In order to investigate the flow and heat transfer characteristics in advanced vortex combustor(AVC), numerical analysis of multi-field synergy on combustion flow has been performed. The results show that the region with smaller field synergy angle β between velocity and temperature gradient is mainly distributed behind the blunt body, in the cavity and in inlet channel. The synergy degree between velocity field and the temperature field is well. With the increase of the inlet velocity, total pressure loss increases from 0.04 to 4.61, angle ϕ between pressure gradient and velocity gradient increases 42.93°–50.65°, angle α between velocity and velocity gradient, angle θ between velocity and pressure gradient, and angle β decrease, angle γ between temperature gradient and velocity gradient increases, but the variation of these variables is small. With the increase of inlet temperature, total pressure loss decreases from 1.09 to 0.03, α and θ increases, but α increases from 68.58° to 72.9°, ϕ, β and γ decrease, but ϕ decreases from 46.11° to 43.68°. With the increase of wall temperature, α and θ decreases, but total pressure loss, β, ϕ and γ increase to some extent. For the turbulence flow field in AVC, By increasing inlet velocity and wall temperature, and reducing inlet temperature, the heat transfer power consumption can be reduced, but the flow and heat transfer can be strengthened, and the comprehensive performance of heat transfer enhancement can be improved.

中文翻译:

先进涡流燃烧室流动传热特性研究

摘要 为研究先进涡流燃烧器(AVC)的流动和传热特性,对燃烧流的多场协同进行了数值分析。结果表明,速度与温度梯度场协同角β较小的区域主要分布在钝体后方、空腔内和入口通道内。速度场与温度场的协同程度较好。随着入口速度的增加,总压力损失从 0.04 增加到 4.61,压力梯度和速度梯度之间的夹角 ϕ 增加 42.93°~50.65°,速度和速度梯度之间的夹角 α,速度和压力梯度之间的夹角 θ,以及夹角β减小,温度梯度与速度梯度夹角γ增大,但这些变量的变化很小。随着入口温度的升高,总压力损失从1.09减小到0.03,α和θ增大,但α从68.58°增大到72.9°,φ、β和γ减小,而φ从46.11°减小到43.68°。随着壁面温度的升高,α和θ减小,但总压力损失β、φ和γ有一定程度的增加。对于AVC中的湍流场,通过提高入口速度和壁温,降低入口温度,可以降低传热功耗,但可以加强流动和传热,增强传热的综合性能改进。但 ϕ 从 46.11° 减小到 43.68°。随着壁面温度的升高,α和θ减小,但总压力损失β、φ和γ有一定程度的增加。对于AVC中的湍流场,通过提高入口速度和壁温,降低入口温度,可以降低传热功耗,但可以加强流动和传热,增强传热的综合性能改进。但 ϕ 从 46.11° 减小到 43.68°。随着壁面温度的升高,α和θ减小,但总压力损失β、φ和γ有一定程度的增加。对于AVC中的湍流场,通过提高入口速度和壁温,降低入口温度,可以降低传热功耗,但可以加强流动和传热,增强传热的综合性能改进。
更新日期:2020-10-01
down
wechat
bug