当前位置: X-MOL 学术Gene › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling.
Gene ( IF 3.5 ) Pub Date : 2020-05-12 , DOI: 10.1016/j.gene.2020.144765
Roger Huerlimann 1 , Gregory E Maes 2 , Michael J Maxwell 3 , Mehdi Mobli 3 , Bradley S Launikonis 4 , Dean R Jerry 5 , Nicholas M Wade 6
Affiliation  

The natural flight response in shrimp is powered by rapid contractions of the abdominal muscle fibres to propel themselves backwards away from perceived danger. This muscle contraction is dependent on repetitive depolarization of muscle plasma membrane, triggering tightly spaced cytoplasmic [Ca2+] transients and rapidly rising tetanic force responses. To achieve such high amplitude and high frequency of Ca2+ transients requires a high abundance of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) to rapidly clear cytoplasmic Ca2+ between each transient and an efficient Ca2+ release system consisting of the Ryanodine Receptor (RyR), and voltage gated Ca2+ channels (CaVs). With the aim to expand our knowledge of muscle gene function and identify orthologous genes regulating muscle excitation-contraction (EC) coupling, this study assembled nine Penaeid shrimp muscle transcriptomes. On average, the nine transcriptomes contained 27,000 contigs, with an annotation rate of 36% and a BUSCO completeness of 70%. Despite maintaining their function, the crustacean RyR and CaV proteins showed evidence of significant diversification from mammalian orthologs, while SERCA remained more conserved. Several key components of protein interaction were conserved, while others showed distinct crustacean specific evolutionary adaptations. Lastly, this study revealed approximately 1,000 orthologous genes involved in muscle specific processes present across all nine species.

中文翻译:

多物种转录组学揭示了调节虾尾肌兴奋-收缩偶联机制的进化多样性。

虾的自然飞行响应是由腹肌纤维的快速收缩提供动力的,以使其自身向后退,远离感知的危险。这种肌肉收缩取决于肌肉质膜的重复去极化,触发紧密间隔的细胞质[Ca2 +]瞬变和迅速增加的强直力反应。要实现如此高幅度和高频率的Ca2 +瞬变,需要大量的肌浆/内质网Ca2 + ATPase(SERCA),以快速清除每个瞬变之间的细胞质Ca2 +和由Ryanodine受体(RyR)和电压组成的有效Ca2 +释放系统门控Ca2 +通道(CaV)。为了扩展我们对肌肉基因功能的认识并确定调节肌肉兴奋收缩(EC)耦合的直系同源基因,这项研究组装了九个对虾虾肌肉转录组。九个转录组平均包含27,000个重叠群,注释率36%,BUSCO完整性70%。尽管保持其功能,甲壳动物的RyR和CaV蛋白显示出与哺乳动物直系同源物显着多样化的证据,而SERCA仍然更加保守。蛋白质相互作用的几个关键组成部分得以保留,而另一些则显示出独特的甲壳类特定进化适应。最后,这项研究揭示了大约1000个直系同源基因参与了所有9个物种的肌肉特定过程。甲壳动物的RyR和CaV蛋白显示出与哺乳动物直系同源蛋白显着多样化的证据,而SERCA则更加保守。蛋白质相互作用的几个关键组成部分得以保留,而另一些则显示出独特的甲壳类特定进化适应。最后,这项研究揭示了大约1000个直系同源基因参与了所有9个物种的肌肉特定过程。甲壳动物的RyR和CaV蛋白显示出与哺乳动物直系同源蛋白显着多样化的证据,而SERCA则更加保守。蛋白质相互作用的几个关键组成部分得以保留,而另一些则显示出独特的甲壳类特定进化适应。最后,这项研究揭示了大约1000个直系同源基因参与了所有9个物种的肌肉特定过程。
更新日期:2020-05-12
down
wechat
bug