当前位置: X-MOL 学术Appl. Nanosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow of magnetized Oldroyd-B nanofluid over a rotating disk
Applied Nanoscience ( IF 3.869 ) Pub Date : 2020-05-12 , DOI: 10.1007/s13204-020-01401-2
Abdul Hafeez , Masood Khan , Jawad Ahmed

Nanofluids have been getting considerable attention in recent years owing to their great importance in an enhanced thermophysical heat transfer as well as the potential usage in various applications like drug delivery and oil recovery. In this study, the characteristics of an Oldroyd-B nanofluid flow caused by axially symmetric rotating disk are analyzed with the features of vertically applied magnetic field. The speciality of current viscoelastic type fluid model involves relaxation and retardation times characteristics. An innovative Buongiorno model is introduced to characterize the heat and mass transport of Oldroyd-B nanofluid considering the impacts of thermophoresis and Brownian diffusion. Consideration is focused on mathematical formulation of momentum equations based on boundary layer approximation theory. The conversion of governing continuity, momentum, energy and concentration expressions into dimensionless forms is based on von Karman similarity variables. The numerical integration of resultant problem is performed through BVP Midrich scheme in Maple. The attained outcomes are exhibited through flow fields, temperature and concentration of nanoparticles distributions as well as local Nusselt and Sherwood numbers. Results reveal that the occurrence of magnetic field in the flow region leads to loss of fluid movement. Also, the thermal and solutal distributions enhance substantially with rising values of retardation time parameter. Moreover, the temperature of liquid boosts up for up growing values of thermophoresis and Brownian motion parameters, respectively.



中文翻译:

磁化的Oldroyd-B纳米流体在转盘上的流动

近年来,由于纳米流体在增强热物理传热中的重要性以及在各种应用中的潜在用途(如药物输送和采油),因此受到了广泛关注。在这项研究中,分析了由轴向对称旋转圆盘引起的Oldroyd-B纳米流体的流动特性,以及垂直施加磁场的特征。当前的粘弹性型流体模型的特长涉及松弛和延迟时间特性。考虑到热泳和布朗扩散的影响,引入了创新的Buongiorno模型来表征Oldroyd-B纳米流体的传热和传质。考虑的重点是基于边界层近似理论的动量方程的数学公式化。控制连续性,动量,能量和集中度表达式转换为无量纲形式是基于von Karman相似变量。结果问题的数值积分是通过Maple中的BVP Midrich方案进行的。通过流场,纳米颗粒分布的温度和浓度以及局部的Nusselt和Sherwood数来显示获得的结果。结果表明,在流动区域中出现磁场会导致流体运动损失。而且,随着延迟时间参数值的增加,热分布和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。能量和浓度表达式成无量纲形式是基于von Karman相似变量。结果问题的数值积分是通过Maple中的BVP Midrich方案进行的。通过流场,纳米颗粒分布的温度和浓度以及局部的Nusselt和Sherwood数来显示获得的结果。结果表明,在流动区域中出现磁场会导致流体运动损失。而且,随着延迟时间参数值的增加,热分布和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。能量和浓度表达式成无量纲形式是基于von Karman相似变量。结果问题的数值积分是通过Maple中的BVP Midrich方案进行的。通过流场,纳米颗粒分布的温度和浓度以及局部Nusselt和Sherwood数来显示获得的结果。结果表明,在流动区域中出现磁场会导致流体运动损失。而且,随着延迟时间参数值的增加,热分布和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。通过流场,纳米颗粒分布的温度和浓度以及局部Nusselt和Sherwood数来显示获得的结果。结果表明,在流动区域中出现磁场会导致流体运动损失。而且,随着延迟时间参数值的增加,热分布和溶液分布显着增强。此外,液体的温度分别升高,以增加热泳和布朗运动参数的值。通过流场,纳米颗粒分布的温度和浓度以及局部Nusselt和Sherwood数来显示获得的结果。结果表明,在流动区域中出现磁场会导致流体运动损失。而且,随着延迟时间参数值的增加,热分布和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。随着延迟时间参数值的增加,热和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。随着延迟时间参数值的增加,热和溶液分布显着增强。此外,液体的温度升高,分别增加了热泳和布朗运动参数的增长值。

更新日期:2020-05-12
down
wechat
bug