当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield
bioRxiv - Synthetic Biology Pub Date : 2020-05-04 , DOI: 10.1101/2020.05.03.075242
Yongkun Lv , Yang Gu , Jingliang Xu , Jingwen Zhou , Peng Xu

Metabolic addiction, an organism that is metabolically addicted with a compound to maintain its growth fitness, is an underexplored area in metabolic engineering. Microbes with heavily engineered pathways or genetic circuits tend to experience metabolic burden leading to degenerated or abortive production phenotype during long-term cultivation or scale-up. A promising solution to combat metabolic instability is to tie up the end-product with an intermediary metabolite that is essential to the growth of the producing host. Here we present a simple strategy to improve both metabolic stability and pathway yield by coupling chemical addiction with negative autoregulatory genetic circuits. Naringenin and lipids compete for the same precursor with inversed pathway yield in oleaginous yeast. Negative autoregulation of the lipogenic pathways, enabled by CRISPRi and fatty acid-inducible promoters, repartitioned malonyl-CoA to favor flavonoid synthesis and increased naringenin production by 74.8%. With flavonoid-sensing hybrid promoters to control leucine synthesis, this flavonoid addiction phenotype confers a selective growth advantage to the naringenin-producing cell. The engineered yeast persisted 90.9% of naringenin titer up to 324 generations. Cells without flavonoid addiction regained growth fitness but lost 94.5% of the naringenin titer after cell passage beyond 300 generations. Metabolic addiction and negative autoregulation may be generalized as basic tools to eliminate metabolic heterogeneity, improve strain stability and pathway yield.

中文翻译:

代谢成瘾与负自我调节相结合,以改善菌株稳定性和途径产量

代谢成瘾是一种通过化合物代谢成瘾以维持其生长适应性的生物,目前在代谢工程领域尚待开发。经过长期精心设计的途径或基因回路的微生物往往会经历代谢负担,从而在长期培养或扩大规模时导致退化或流产的生产表型。解决新陈代谢不稳定性的一种有前途的解决方案是将最终产物与中间代谢产物结合在一起,这对于生产宿主的生长至关重要。在这里,我们提出了一种简单的策略,通过将化学成瘾与负的自动调节性遗传电路相结合来提高代谢稳定性和途径产量。柚皮素和脂质竞争在含油酵母中具有相反途径产量的相同前体。脂肪生成途径的负自动调节 在CRISPRi和脂肪酸诱导型启动子的支持下,丙二酰辅酶A重新分配以促进类黄酮合成,并使柚皮素产量增加74.8%。通过类黄酮敏感的杂合启动子来控制亮氨酸的合成,这种类黄酮成瘾表型赋予了柚皮素产生细胞选择性的生长优势。经过工程改造的酵母在324代中仍具有90.9%的柚皮素滴度。没有黄酮类成瘾的细胞在经过300代以上的传代后恢复了生长适应性,但失去了柚皮素效价的94.5%。代谢成瘾和负性自动调节可能被普遍用作消除代谢异质性,提高菌株稳定性和途径产量的基本工具。通过类黄酮敏感的杂合启动子来控制亮氨酸的合成,这种类黄酮成瘾表型赋予了柚皮素产生细胞选择性的生长优势。经过工程改造的酵母在324代中仍具有90.9%的柚皮素滴度。没有黄酮类成瘾的细胞在经过300代以上的传代后恢复了生长适应性,但失去了柚皮素效价的94.5%。代谢成瘾和负性自动调节可能被普遍用作消除代谢异质性,提高菌株稳定性和途径产量的基本工具。通过类黄酮敏感的杂合启动子来控制亮氨酸的合成,这种类黄酮成瘾表型赋予了柚皮素产生细胞选择性的生长优势。经过工程改造的酵母在324代中仍具有90.9%的柚皮素滴度。没有黄酮类成瘾的细胞在经过300代以上的传代后恢复了生长适应性,但失去了柚皮素效价的94.5%。代谢成瘾和负性自动调节可能被普遍用作消除代谢异质性,提高菌株稳定性和途径产量的基本工具。没有黄酮类成瘾的细胞在经过300代以上的传代后恢复了生长适应性,但失去了柚皮素效价的94.5%。代谢成瘾和负性自动调节可能被普遍用作消除代谢异质性,提高菌株稳定性和途径产量的基本工具。没有黄酮类成瘾的细胞在经过300代以上的传代后恢复了生长适应性,但失去了柚皮素效价的94.5%。代谢成瘾和负性自动调节可能被普遍用作消除代谢异质性,提高菌株稳定性和途径产量的基本工具。
更新日期:2020-05-04
down
wechat
bug