当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formation of biomolecular condensates in bacteria by tuning protein electrostatics
bioRxiv - Synthetic Biology Pub Date : 2020-05-02 , DOI: 10.1101/2020.05.02.072645
Vivian Yeong , Emily G Werth , Lewis M Brown , Allie C Obermeyer

Biomolecular condensates provide a strategy for cellular organization without a physical membrane barrier while allowing for dynamic, responsive organization of the cell. To date, very few biomolecular condensates have been identified in prokaryotes, presenting an obstacle to engineering these compartments in bacteria. As a novel strategy for bacterial compartmentalization, protein supercharging and complex coacervation were employed to engineer liquid-like condensates in E. coli. A simple model for the phase separation of supercharged proteins was developed and used to predict intracellular condensate formation. Herein, we demonstrate that GFP-dense condensates formed by expressing GFP variants of sufficient charge in cells are dynamic and enrich specific nucleic acid and protein components. This study provides a fundamental characterization of intracellular phase separation in E. coli driven by protein supercharging and highlights future utility in designing functional synthetic membraneless organelles.

中文翻译:

通过调节蛋白质静电在细菌中形成生物分子冷凝物

生物分子缩合物提供了一种无需物理膜屏障的细胞组织策略,同时允许动态,响应性地组织细胞。迄今为止,在原核生物中已鉴定出很少的生物分子缩合物,这对在细菌中改造这些区室构成了障碍。作为细菌分区的一种新策略,蛋白质增压和复杂凝聚被用于工程化大肠杆菌中的液体状冷凝物。开发了一种用于增压蛋白质相分离的简单模型,并将其用于预测细胞内冷凝物的形成。在本文中,我们证明了通过在细胞中表达足够电荷的GFP变体形成的GFP密集的缩合物是动态的,并富集了特定的核酸和蛋白质成分。这项研究提供了由蛋白质增压驱动的大肠杆菌细胞内相分离的基本特征,并突出了设计功能性合成无膜细胞器的未来实用性。
更新日期:2020-05-02
down
wechat
bug