当前位置: X-MOL 学术bioRxiv. Plant Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbe-dependent heterosis in maize
bioRxiv - Plant Biology Pub Date : 2020-10-20 , DOI: 10.1101/2020.05.05.078766
Maggie R. Wagner , Clara Tang , Fernanda Salvato , Kayla M. Clouse , Alexandria Bartlett , Shannon Sermons , Mark Hoffmann , Peter J. Balint-Kurti , Manuel Kleiner

Hybrids account for nearly all commercially planted varieties of maize and many other crop plants, because crosses between inbred lines of these species produce F1 offspring that greatly outperform their parents. The mechanisms underlying this phenomenon, called heterosis or hybrid vigor, are not well understood despite over a century of intensive research (Birchler et al. 2003). The leading hypotheses-which focus on quantitative genetic mechanisms (dominance, overdominance, and epistasis) and molecular mechanisms (gene dosage and transcriptional regulation)-have been able to explain some but not all of the observed patterns of heterosis (Stuber et al. 1992; Birchler 2015). However, possible ecological drivers of heterosis have largely been ignored. Here we show that heterosis of root biomass and germination in maize is strongly dependent on the belowground microbial environment. We found that, in some cases, inbred lines perform as well by these criteria as their F1 offspring under sterile conditions, but that heterosis can be restored by inoculation with a simple community of seven bacterial strains. We observed the same pattern for seedlings inoculated with autoclaved vs. live soil slurries in a growth chamber, and for plants grown in fumigated vs. untreated soil in the field. Together, our results demonstrate a novel, ecological mechanism for heterosis whereby soil microbes generally impair the germination and early growth of inbred but not hybrid maize.

中文翻译:

玉米中微生物依赖性杂种优势

杂种几乎构成所有玉米和许多其他农作物的商业种植品种,因为这些品种的近交系之间的杂交产生了F1后代,其表现远胜于其父母。尽管经过一个多世纪的深入研究,仍未很好地理解这种现象的基础,即杂种优势或杂种优势(Birchler等人,2003年)。主要的假说-专注于定量遗传机制(显性,主导性和上位性)和分子机制(基因剂量和转录调控)-能够解释部分但并非全部观察到的杂种优势模式(Stuber等人1992 ; Birchler 2015)。但是,杂种优势的可能生态驱动因素已被大大忽略。在这里,我们表明玉米根系生物量和发芽的杂种优势强烈依赖于地下微生物环境。我们发现,在某些情况下,按照这些标准,自交系在无菌条件下的表现也与其F1后代相同,但是可以通过接种七个细菌菌株的简单群落来恢复杂种优势。我们观察到在生长室中用高压灭菌的泥浆与活土壤泥浆接种的幼苗以及田间在熏蒸的土壤与未经处理的土壤中生长的植物观察到相同的模式。总之,我们的结果证明了杂种优势的新型生态机制,其中土壤微生物通常会损害自交系而不是杂交玉米的发芽和早期生长。在无菌条件下,这些自交系的表现与F1后代一样好,但是通过接种七个细菌菌株的简单群落,可以恢复杂种优势。我们观察到在生长室中用高压灭菌的泥浆与活土壤泥浆接种的幼苗以及田间在熏蒸的土壤与未经处理的土壤中生长的植物观察到相同的模式。总之,我们的结果证明了杂种优势的新型生态机制,其中土壤微生物通常会损害自交系而不是杂交玉米的发芽和早期生长。在无菌条件下,这些自交系的表现与F1后代一样好,但是通过接种七个细菌菌株的简单群落,可以恢复杂种优势。我们观察到在生长室中用高压灭菌的泥浆与活土壤泥浆接种的幼苗以及田间在熏蒸的土壤与未经处理的土壤中生长的植物观察到相同的模式。总之,我们的结果证明了杂种优势的新型生态机制,其中土壤微生物通常会损害自交系而不是杂交玉米的发芽和早期生长。未经处理的土壤。总之,我们的结果证明了杂种优势的新型生态机制,其中土壤微生物通常会损害自交系而不是杂交玉米的发芽和早期生长。未经处理的土壤。总之,我们的结果证明了杂种优势的新型生态机制,其中土壤微生物通常会损害自交系而不是杂交玉米的发芽和早期生长。
更新日期:2020-10-27
down
wechat
bug