当前位置: X-MOL 学术Appl. Soil Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient
Applied Soil Ecology ( IF 4.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.apsoil.2020.103647
Jirong Cao , Xiu Jia , Shuang Pang , Yecui Hu , Yuncong Li , Qibing Wang

Abstract As more attentions have been paid to microbial taxonomic community structure along altitudinal gradients, the knowledge of the altitudinal variations in microbial functional structure in terrestrial ecosystems is limited. More importantly, the dominant assembly processes that drive altitudinal variations in both taxonomic composition and functional structure remain unclear. To fill the gaps, we integrated soil prokaryotic taxonomic community structure, functional community structure and community assembly processes along an altitudinal gradient into a comprehensive understanding. The results revealed that both taxonomic community structure and core functional community structure of soil prokaryotic microbes significantly differed across altitudes. We detected the core functional groups associated with the redox reactions essential for microbial metabolism and biogeochemical cycles across altitudes. Chemoheterotrophy and photoautotrophy were dominant in abundance, indicating the important roles of primary energy metabolism for soil prokaryotic community. The whole prokaryotic community taxonomic composition was dominantly shaped by dispersal limitation (governing 74% of spatial turnover). The variation of functional structure was primarily caused by environmental selection, while the taxonomic variation within individual functional groups was weakly related to selection but mainly driven by drift. These results are critical for predicting the future dynamics of soil microbial community in the face of disturbances.

中文翻译:

沿海拔梯度土壤原核生物群落的功能结构、分类组成和主要组装过程

摘要 由于微生物分类群落结构沿海拔梯度受到越来越多的关注,对陆地生态系统微生物功能结构海拔变化的认识有限。更重要的是,驱动分类组成和功能结构高度变化的主要组装过程仍不清楚。为了填补这一空白,我们将土壤原核生物分类群落结构、功能群落结构和群落组装过程沿海拔梯度整合成一个全面的认识。结果表明,土壤原核微生物的分类群落结构和核心功能群落结构在不同海拔高度上均存在显着差异。我们检测到与微生物代谢和跨海拔生物地球化学循环必不可少的氧化还原反应相关的核心官能团。化学异养和光能自养在丰度上占主导地位,表明初级能量代谢对土壤原核生物群落的重要作用。整个原核生物群落分类组成主要受分散限制(控制 74% 的空间周转)的影响。功能结构的变异主要由环境选择引起,而单个功能组内的分类变异与选择相关性较弱,但主要受漂移驱动。这些结果对于预测面临干扰时土壤微生物群落的未来动态至关重要。化学异养和光能自养在丰度上占主导地位,表明初级能量代谢对土壤原核生物群落的重要作用。整个原核生物群落分类组成主要受分散限制(占空间周转率的 74%)的影响。功能结构的变异主要由环境选择引起,而单个功能组内的分类变异与选择相关性较弱,但主要受漂移驱动。这些结果对于预测面临干扰时土壤微生物群落的未来动态至关重要。化学异养和光能自养在丰度上占主导地位,表明初级能量代谢对土壤原核生物群落的重要作用。整个原核生物群落分类组成主要受分散限制(控制 74% 的空间周转)的影响。功能结构的变异主要由环境选择引起,而单个功能组内的分类变异与选择相关性较弱,但主要受漂移驱动。这些结果对于预测面临干扰时土壤微生物群落的未来动态至关重要。整个原核生物群落分类组成主要受分散限制(控制 74% 的空间周转)的影响。功能结构的变异主要由环境选择引起,而单个功能组内的分类变异与选择相关性较弱,但主要受漂移驱动。这些结果对于预测面临干扰时土壤微生物群落的未来动态至关重要。整个原核生物群落分类组成主要受分散限制(控制 74% 的空间周转)的影响。功能结构的变异主要由环境选择引起,而单个功能组内的分类变异与选择相关性较弱,但主要受漂移驱动。这些结果对于预测面临干扰时土壤微生物群落的未来动态至关重要。
更新日期:2020-11-01
down
wechat
bug