当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
State-to-state scattering of highly vibrationally excited NO at broadly tunable energies.
Nature Chemistry ( IF 21.8 ) Pub Date : 2020-05-11 , DOI: 10.1038/s41557-020-0466-8
Chandika Amarasinghe 1 , Hongwei Li 1 , Chatura A Perera 1 , Matthieu Besemer 2 , Junxiang Zuo 3 , Changjian Xie 3, 4 , Ad van der Avoird 2 , Gerrit C Groenenboom 2 , Hua Guo 3 , Jacek Kłos 5 , Arthur G Suits 1
Affiliation  

Experimental developments continue to challenge the theoretical description of molecular interactions. One key arena in which these advances have taken place is in rotationally inelastic scattering. Electric fields have been used with great success to select the initial quantum state and slow molecules for scattering studies, revealing novel stereodynamics, diffraction oscillations and scattering resonances. These have enjoyed excellent agreement with quantum scattering calculations performed on state-of-the-art coupled-cluster potential energy surfaces. To date these studies have largely employed reactants in the ground vibrational state (v = 0) and the lowest low-field-seeking quantum state. Here we describe the use of stimulated emission pumping to prepare NO molecules in arbitrary single rotational and parity states of v = 10 for inelastic scattering studies. These are employed in a near-copropagating molecular beam geometry that permits the collision energy to be tuned from above room temperature to 1 K or below, with product differential cross-sections obtained by velocity map imaging. This extremely nonequilibrium condition, not found in nature, tests current theoretical methods in a new regime.

中文翻译:

高振动激发的NO在广泛可调的能量下的状态间散射。

实验的发展继续挑战分子相互作用的理论描述。这些进展发生的一个关键领域是旋转非弹性散射。电场已成功地用于选择初始量子态和慢分子进行散射研究,揭示了新颖的立体动力学,衍射振荡和散射共振。这些与在最新的耦合簇势能表面上执行的量子散射计算有着极好的一致性。迄今为止,这些研究已大量使用了处于基振动态(v = 0)和最低的低场寻求量子态的反应物。在这里,我们描述了使用激发发射泵来制备无弹性散射研究中的v = 10的任意单个旋转和奇偶状态的NO分子。它们被用于近乎传播的分子束几何结构中,该结构允许将碰撞能量从室温以上调至1 K或以下,并通过速度图成像获得乘积微分截面。这种极端的非平衡条件是自然界中未发现的,它在新的制度下测试了当前的理论方法。
更新日期:2020-05-11
down
wechat
bug