当前位置: X-MOL 学术IEEE Can. J. Electr. Comput. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On-Chip CMOS Self-Decoupling Battery Cell System for Security Protection
IEEE Canadian Journal of Electrical and Computer Engineering ( IF 2 ) Pub Date : 2020-01-01 , DOI: 10.1109/cjece.2019.2949934
Radu Muresan

This article presents an effective on-chip power analysis attack countermeasure based on a new CMOS self-decoupling battery cell system that uses a self-decoupling circuit. The self-decoupling circuit dynamically controls an on-chip virtual power supply point, $V_{\mathrm {ddv}}$ , that can be used to power security-sensitive modules. The circuit automatically decouples an on-chip CMOS battery cell from powering a sensitive module when its voltage level reaches a designed minimum threshold level $V_{\mathrm {dd-min}}$ and connects it for a very short charging cycle to the chip’s main voltage supply, $V_{\mathrm {dd}}$ . The charging cycles for the experiments presented in this article are less than 10 ns and are designed to support the CMOS battery cell size and the minimum designed threshold voltage level $V_{\mathrm {dd-min}}$ . Simulation results of test designs implemented in the 45-nm CMOS technology process show that the proposed countermeasure is efficient when used with battery cell sizes that can power the protected cryptographic module for more than ten data operation cycles before recharging. In addition, using the on-chip self-decoupling battery cell system allows for power consumption savings within the protected module of up to 43 % due to the dynamic voltage scaling generated at the virtual power supply point.

中文翻译:

用于安全保护的片上 CMOS 自解耦电池系统

本文基于使用自去耦电路的新型 CMOS 自去耦电池系统,提出了一种有效的片上电源分析攻击对策。自去耦电路动态控制片上虚拟电源点, $V_{\mathrm {ddv}}$ ,可用于为安全敏感模块供电。当电压电平达到设计的最小阈值电平时,该电路会自动将片上 CMOS 电池单元与为敏感模块供电的断开连接 $V_{\mathrm {dd-min}}$ 并将其连接到芯片的主电源,以进行非常短的充电周期, $V_{\mathrm {dd}}$ . 本文所述实验的充电周期小于 10 ns,旨在支持 CMOS 电池单元尺寸和最小设计阈值电压水平 $V_{\mathrm {dd-min}}$ . 在 45 纳米 CMOS 技术工艺中实施的测试设计的仿真结果表明,当与电池单元尺寸一起使用时,所提出的对策是有效的,这些电池单元可以在充电前为受保护的加密模块供电十多个数据操作周期。此外,由于虚拟电源点产生的动态电压缩放,使用片上自去耦电池系统可在受保护模块内节省高达 43% 的功耗。
更新日期:2020-01-01
down
wechat
bug