当前位置: X-MOL 学术NPG Asia Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On-demand tuning of charge accumulation and carrier mobility in quantum dot solids for electron transport and energy storage devices
NPG Asia Materials ( IF 9.7 ) Pub Date : 2020-05-08 , DOI: 10.1038/s41427-020-0215-x
Ricky Dwi Septianto , Liming Liu , Ferry Iskandar , Nobuhiro Matsushita , Yoshihiro Iwasa , Satria Zulkarnaen Bisri

Abstract

Assemblies of colloidal quantum dots (CQDs) are attractive for a broad range of applications because of the ability to exploit the quantum confinement effect and the large surface-to-volume ratio due to their small dimensions. Each application requires different types of assemblies based on which properties are intended to be utilized. Greater control of assembly formation and optimization of the related carrier transport characteristics are vital to advance the utilization of these materials. Here, we demonstrate on-demand control of the assembly morphology and electrical properties of highly crosslinked CQD solids through the augmentation of various assembly methods. Employment of electric-double-layer (EDL) gating on these assembly structures (i.e., an amorphous assembly, a hierarchical porous assembly, and a compact superlattice assembly) reveals their intrinsic carrier transport and accumulation characteristics. Demonstrations of high electron mobility with a high current modulation ratio reaching 105 in compact QD films and of a record-high areal capacitance of 400 μF/cm2 in an electric-double-layer supercapacitor with very thin (<100 nm) QD hierarchical porous assemblies signify the versatility of CQDs as building blocks for various modern electronic devices.



中文翻译:

用于电子传输和能量存储设备的量子点固体中电荷积累和载流子迁移率的按需调整

摘要

胶体量子点(CQD)组件具有广泛的应用前景,因为它具有利用量子约束效应的能力以及由于其尺寸小而具有大的表面积体积比的能力。每个应用程序都需要基于要使用的属性的不同类型的程序集。更好地控制装配体的形成以及优化相关的载流子传输特性对于提高这些材料的利用率至关重要。在这里,我们演示了通过增加各种组装方法来按需控制高度交联的CQD固体的组装形态和电性能。在这些装配结构(即无定形装配,分层多孔装配,以及紧凑的超晶格组件)揭示了它们固有的载流子传输和累积特性。演示高电子迁移率和高电流调制比达到10在紧凑的QD薄膜中仅占5个,在具有非常薄(<100 nm)QD分层多孔组件的双电层超级电容器中具有400μF/ cm 2的创纪录的面电容,表明CQD的多功能性可作为各种现代技术的基础电子设备。

更新日期:2020-05-08
down
wechat
bug