当前位置: X-MOL 学术Commun. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity
Communications Physics ( IF 5.5 ) Pub Date : 2020-05-08 , DOI: 10.1038/s42005-020-0352-0
Taeyong Chang , Suwan Jeon , Minsung Heo , Jonghwa Shin

Microscopic structuring can change the effective properties of a material by several orders of magnitude. An example of this is animal bone, which has an effective elastic modulus that is more than 1,000 times larger than that of the constituent proteins. Here, we propose a broadband-enhancement principle of photonic nonlinearity that has a similar mathematical origin as the bone example. The proposed staggered array metamaterials violate the standard Miller’s rule in nonlinear optics and can enhance the third-order nonlinearity by more than a thousand to a billion times, depending on target operation frequencies. This metamaterial principle also enables manipulation of the individual components of the linear and nonlinear susceptibility tensors. Our biomimetic approach overcomes the fundamental speed-efficiency trade-off in current resonant enhancement schemes, making faster and more efficient all-optical devices possible for 1.55 μm wavelength. The principle is also applicable to ionic diffusion, heat conduction, or other transport problems.



中文翻译:

模仿光子超材料中的生物力学原理,实现巨大的宽带非线性

微观结构可以将材料的有效特性改变几个数量级。动物骨头就是一个例子,它的有效弹性模量比构成蛋白质的弹性模量大1,000倍以上。在这里,我们提出了光子非线性的宽带增强原理,其数学起源与骨骼示例相似。所提出的交错阵列超材料违反了非线性光学中的标准米勒规则,并且可以根据目标工作频率将三阶非线性增强一千至十亿倍。这种超材料原理还使得能够操纵线性和非线性磁化率张量的各个分量。我们的仿生方法克服了当前共振增强方案中基本的速度效率折衷方案,使波长为1.55μm的全光器件成为可能,从而变得更快,更高效。该原理也适用于离子扩散,导热或其他传输问题。

更新日期:2020-05-08
down
wechat
bug