当前位置: X-MOL 学术Int. J. Adapt. Control Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extremum seeking for unknown scalar maps in cascade with a class of parabolic partial differential equations
International Journal of Adaptive Control and Signal Processing ( IF 3.1 ) Pub Date : 2020-05-06 , DOI: 10.1002/acs.3117
Tiago Roux Oliveira 1 , Jan Feiling 2 , Shumon Koga 3 , Miroslav Krstic 3
Affiliation  

We present a generalization of the scalar gradient extremum seeking (ES) algorithm, which maximizes static maps in the presence of infinite-dimensional dynamics described by parabolic partial differential equations (PDEs). The PDE dynamics contains reaction-advection-diffusion (RAD) like terms. Basically, the effects of the PDE dynamics in the additive dither signals are canceled out using the trajectory generation paradigm. Moreover, the inclusion of a boundary control for the PDE process stabilizes the closed-loop feedback system. By properly demodulating the map output corresponding to the manner in which it is perturbed, the ES algorithm maximizes the output of the unknown map. In particular, our parabolic PDE compensator employs the same perturbation-based (averaging-based) estimate for the Hessian of the function to be maximized applied in the previous publications free of PDEs. We prove local stability of the algorithm, real-time maximization of the map and convergence to a small neighborhood of the desired (unknown) extremum by means of backstepping transformation, Lyapunov functional and the theory of averaging in infinite dimensions. Finally, we present the generalization to the scalar Newton-based ES algorithm, which maximizes the map's higher derivatives in the presence of RAD-like dynamics. By modifying the demodulating signals, the ES algorithm maximizes the nth derivative only through measurements of the own map. The Newton-based ES approach removes the dependence of the convergence rate on the unknown Hessian of the higher derivative, an effort to improve performance and remove limitations of standard gradient-based ES. Numerical examples support the theoretical results.

中文翻译:

一类抛物偏微分方程级联未知标量映射的极值求法

我们提出了标量梯度极值搜索 (ES) 算法的泛化,该算法在存在由抛物线偏微分方程 (PDE) 描述的无限维动力学的情况下最大化静态图。PDE 动力学包含类似反应平流扩散 (RAD) 的术语。基本上,使用轨迹生成范例抵消了加性抖动信号中 PDE 动力学的影响。此外,包含对 PDE 过程的边界控制可以稳定闭环反馈系统。通过适当地解调对应于扰动方式的地图输出,ES算法最大化未知地图的输出。特别是,我们的抛物线 PDE 补偿器采用相同的基于扰动(基于平均)的估计函数的 Hessian 进行最大化,这些估计应用于之前没有 PDE 的出版物中。我们通过反步变换、Lyapunov 函数和无限维平均理论证明了算法的局部稳定性、映射的实时最大化和收敛到所需(未知)极值的小邻域。最后,我们介绍了基于标量牛顿的 ES 算法的泛化,该算法在存在类似 RAD 的动力学的情况下最大化地图的更高导数。通过修改解调信号,ES 算法最大化 通过反步变换、李雅普诺夫函数和无限维平均理论,实时最大化地图并收敛到所需(未知)极值的小邻域。最后,我们介绍了基于标量牛顿的 ES 算法的泛化,该算法在存在类似 RAD 的动力学的情况下最大化地图的更高导数。通过修改解调信号,ES 算法最大化 通过反步变换、李雅普诺夫函数和无限维平均理论,实时最大化地图并收敛到所需(未知)极值的小邻域。最后,我们介绍了基于标量牛顿的 ES 算法的泛化,该算法在存在类似 RAD 的动力学的情况下最大化地图的更高导数。通过修改解调信号,ES 算法最大化n th 导数只能通过测量自己的地图。基于牛顿的 ES 方法消除了收敛速度对未知高阶导数 Hessian 的依赖,努力提高性能并消除基于标准梯度的 ES 的限制。数值例子支持理论结果。
更新日期:2020-05-06
down
wechat
bug