当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect.
Advanced Materials ( IF 29.4 ) Pub Date : 2020-05-06 , DOI: 10.1002/adma.202001268
Zhaoyang Liu 1 , Haixin Qiu 1 , Can Wang 1 , Zongping Chen 2 , Björn Zyska 3 , Akimitsu Narita 2, 4 , Artur Ciesielski 1 , Stefan Hecht 3, 5, 6 , Lifeng Chi 7 , Klaus Müllen 2 , Paolo Samorì 1
Affiliation  

Van der Waals heterostructures (VDWHs), obtained via the controlled assembly of 2D atomically thin crystals, exhibit unique physicochemical properties, rendering them prototypical building blocks to explore new physics and for applications in optoelectronics. As the emerging alternatives to graphene, monolayer transition metal dichalcogenides and bottom‐up synthesized graphene nanoribbons (GNRs) are promising candidates for overcoming the shortcomings of graphene, such as the absence of a bandgap in its electronic structure, which is essential in optoelectronics. Herein, VDWHs comprising GNRs onto monolayer MoS2 are fabricated. Field‐effect transistors (FETs) based on such VDWHs show an efficient suppression of the persistent photoconductivity typical of MoS2, resulting from the interfacial charge transfer process. The MoS2‐GNR FETs exhibit drastically reduced hysteresis and more stable behavior in the transfer characteristics, which is a prerequisite for the further photomodulation of charge transport behavior within the MoS2‐GNR VDWHs. The physisorption of photochromic molecules onto the MoS2‐GNR VDWHs enables reversible light‐driven control over charge transport. In particular, the drain current of the MoS2‐GNR FET can be photomodulated by 52%, without displaying significant fatigue over at least 10 cycles. Moreover, four distinguishable output current levels can be achieved, demonstrating the great potential of MoS2‐GNR VDWHs for multilevel memory devices.

中文翻译:

全半导体2D-1D范德华异质结构中电荷传输的光调制,具有持久的光电导效应。

通过二维原子薄晶体的受控组装获得的范德华异质结构(VDWHs)具有独特的物理化学性质,使其成为典型的构建基块,以探索新的物理学并应用于光电学。作为新兴的石墨烯替代品,单层过渡金属二硫化碳和自下而上合成的石墨烯纳米带(GNR)有望克服石墨烯的缺点,例如在其电子结构中不存在带隙,这在光电子学中是必不可少的。在此,制造了在单层MoS 2上包括GNR的VDWH 。基于这种VDWH的场效应晶体管(FET)显示出对MoS 2典型的持久光电导的有效抑制,这是由于界面电荷转移过程引起的。MoS 2 ‐GNR FET的磁滞特性大大降低,并且传输特性更稳定,这是在MoS 2 ‐GNR VDWHs中进一步光调制电荷传输行为的前提。光致变色分子在MoS 2 ‐GNR VDWHs上的物理吸附可实现对电荷传输的可逆光驱动控制。特别是,MoS 2 -GNR FET的漏极电流可以进行52%的光调制,而在至少10个周期内不会表现出明显的疲劳。此外,可以实现四个可区分的输出电流水平,这证明了MoS 2 -GNR VDWH在多级存储设备中的巨大潜力。
更新日期:2020-07-01
down
wechat
bug