当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heteroatom doped graphene engineering for energy storage and conversion
Materials Today ( IF 24.2 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.mattod.2020.04.010
Rajesh Kumar , Sumanta Sahoo , Ednan Joanni , Rajesh K. Singh , Keiichiro Maegawa , Wai Kian Tan , Go Kawamura , Kamal K. Kar , Atsunori Matsuda

Abstract Heteroatom-doped graphene and its derived layered materials play a substantial role in several emerging science fields, demonstrating great potential for implementation in new devices and for improving the performance of existing technologies. A wide variety of strategies have been applied for the controlled synthesis and for achieving the intended doping/co-doping levels in the carbon network of graphene-based materials. Precise and reproducible doping is crucial for altering the Fermi energy level and to tune the band gap according to the desired device/application. Heteroatom-doped and co-doped graphene-based materials (n-type and p-type doping) have been synthesized for devices in energy-related applications using various chemical and physical routes. In this review article, we survey the most recent research works on the synthesis of heteroatom-doped graphene materials such as reduced graphene oxide, graphene oxide, graphene quantum dots and graphene nanoribbons. Applications of these materials in energy storage/conversion devices (supercapacitors, batteries, fuel cells, water splitting and solar cells) are also reviewed. Finally, the challenges and future perspectives for heteroatom-doped graphene materials are briefly discussed. We hope this article offers a useful starting point for researchers entering the field, providing an overview of synthesis approaches and energy applications.

中文翻译:

用于能量存储和转换的杂原子掺杂石墨烯工程

摘要 杂原子掺杂石墨烯及其衍生的层状材料在几个新兴科学领域发挥着重要作用,显示出在新设备中实施和提高现有技术性能的巨大潜力。各种各样的策略已应用于受控合成和实现石墨烯基材料碳网络中预期的掺杂/共掺杂水平。精确且可重复的掺杂对于改变费米能级和根据所需的器件/应用调整带隙至关重要。杂原子掺杂和共掺杂石墨烯基材料(n 型和 p 型掺杂)已被合成用于使用各种化学和物理途径的能源相关应用中的设备。在这篇评论文章中,我们调查了最近关于杂原子掺杂石墨烯材料合成的研究工作,例如还原氧化石墨烯、氧化石墨烯、石墨烯量子点和石墨烯纳米带。还回顾了这些材料在能量存储/转换设备(超级电容器、电池、燃料电池、水分解和太阳能电池)中的应用。最后,简要讨论了杂原子掺杂石墨烯材料的挑战和未来前景。我们希望本文为进入该领域的研究人员提供一个有用的起点,提供合成方法和能源应用的概述。燃料电池、水分解和太阳能电池)也进行了审查。最后,简要讨论了杂原子掺杂石墨烯材料的挑战和未来前景。我们希望本文为进入该领域的研究人员提供一个有用的起点,提供合成方法和能源应用的概述。燃料电池、水分解和太阳能电池)也进行了审查。最后,简要讨论了杂原子掺杂石墨烯材料的挑战和未来前景。我们希望本文为进入该领域的研究人员提供一个有用的起点,提供合成方法和能源应用的概述。
更新日期:2020-10-01
down
wechat
bug