当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convection velocity of temperature fluctuations in a natural convection boundary layer
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.ijheatfluidflow.2020.108590
K.M. Talluru , H.F. Pan , J.C. Patterson , K.A. Chauhan

Abstract Measurements of instantaneous temperature are carried out in a natural convection boundary layer (NCBL) developing over a vertical hot plate using a combination of an infra-red sensor, three cold-wire probes and a Resistance Temperature device (RTD). The aim of this study is to establish experimental procedures for high spatial and temporal resolution temperature measurements, and use that information to measure the convective speed of thermal structures in the flow. The evolution of NCBL along the hot plate is compared against existing empirical models. Statistics of mean and fluctuating temperature are in excellent agreement with the previously reported experimental data for a turbulent NCBL. The boundary layer thickness is observed to grow as y0.45, where y is the vertical distance along the heated plate. Separate experiments are conducted by varying the heat input to investigate its effect on convection velocity (Uc) of thermal structures in the flow. It is found that Uc remained nominally constant in the region 0 ≤ x ≤ δT/2 (δT is the thickness of thermal boundary layer) and decreased in a log-linear fashion in the outer region of NCBL. The results of Uc are found to be consistent with the shadowgraph measurements carried out in the same test rig, and the normalised convection velocity, U c * = U c δ T ν is found to depend on Rayleigh number as U c * ∝ R a 0.82 , where ν is the kinematic viscosity of air. Importantly, these experimental observations are in agreement with the three layer model put forth by Wells and Worster (2008).

中文翻译:

自然对流边界层中温度波动的对流速度

摘要 使用红外传感器、三个冷线探头和电阻温度装置 (RTD) 的组合,在垂直热板上形成的自然对流边界层 (NCBL) 中进行瞬时温度测量。本研究的目的是建立高空间和时间分辨率温度测量的实验程序,并使用该信息来测量流动中热结构的对流速度。NCBL 沿热板的演变与现有的经验模型进行了比较。平均温度和波动温度的统计数据与先前报告的湍流 NCBL 实验数据非常一致。观察到边界层厚度增长为 y0.45,其中 y 是沿加热板的垂直距离。通过改变热输入进行单独的实验,以研究其对流动中热结构的对流速度 (Uc) 的影响。发现 Uc 在 0 ≤ x ≤ δT/2(δT 是热边界层的厚度)区域内名义上保持不变,并在 NCBL 的外部区域以对数线性方式下降。发现 Uc 的结果与在同一测试台上进行的阴影图测量一致,并且发现归一化对流速度 U c * = U c δ T ν 取决于瑞利数,如 U c * ∝ R a 0.82 ,其中 ν 是空气的运动粘度。重要的是,这些实验观察结果与 Wells 和 Worster (2008) 提出的三层模型一致。发现 Uc 在 0 ≤ x ≤ δT/2(δT 是热边界层的厚度)区域内名义上保持不变,并在 NCBL 的外部区域以对数线性方式下降。发现 Uc 的结果与在同一测试台上进行的阴影图测量一致,并且发现归一化对流速度 U c * = U c δ T ν 取决于瑞利数,如 U c * ∝ R a 0.82 ,其中 ν 是空气的运动粘度。重要的是,这些实验观察结果与 Wells 和 Worster (2008) 提出的三层模型一致。发现 Uc 在 0 ≤ x ≤ δT/2(δT 是热边界层的厚度)区域内名义上保持不变,并在 NCBL 的外部区域以对数线性方式下降。发现 Uc 的结果与在同一测试台上进行的阴影图测量一致,并且发现归一化对流速度 U c * = U c δ T ν 取决于瑞利数,如 U c * ∝ R a 0.82 ,其中 ν 是空气的运动粘度。重要的是,这些实验观察结果与 Wells 和 Worster (2008) 提出的三层模型一致。发现 Uc 的结果与在同一测试台上进行的阴影图测量一致,并且发现归一化对流速度 U c * = U c δ T ν 取决于瑞利数,如 U c * ∝ R a 0.82 ,其中 ν 是空气的运动粘度。重要的是,这些实验观察结果与 Wells 和 Worster (2008) 提出的三层模型一致。发现 Uc 的结果与在同一测试台上进行的阴影图测量一致,并且发现归一化对流速度 U c * = U c δ T ν 取决于瑞利数,如 U c * ∝ R a 0.82 ,其中 ν 是空气的运动粘度。重要的是,这些实验观察结果与 Wells 和 Worster (2008) 提出的三层模型一致。
更新日期:2020-08-01
down
wechat
bug