当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2.
Biotechnology for Biofuels ( IF 6.3 ) Pub Date : 2020-05-06 , DOI: 10.1186/s13068-020-01720-0
Li Zhang 1, 2, 3 , Lei Chen 1, 2, 3 , Jinjin Diao 1, 2, 3 , Xinyu Song 1, 2, 3, 4 , Mengliang Shi 1, 2, 3 , Weiwen Zhang 1, 2, 3, 4
Affiliation  

Background Cyanobacterial carbohydrates, such as sucrose, have been considered as potential renewable feedstock to support the production of fuels and chemicals. However, the separation and purification processes of these carbohydrates will increase the production cost of chemicals. Co-culture fermentation has been proposed as an efficient and economical way to utilize these cyanobacterial carbohydrates. However, studies on the application of co-culture systems to achieve green biosynthesis of platform chemicals are still rare. Results In this study, we successfully achieved one-step conversion of sucrose derived from cyanobacteria to fine chemicals by constructing a microbial consortium consisting of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 and Escherichia coli to sequentially produce sucrose and then the platform chemical 3-hydroxypropionic acid (3-HP) from CO2 under photoautotrophic growth conditions. First, efforts were made to overexpress the sucrose permease-coding gene cscB under the strong promoter P cpc560 in S. elongatus UTEX 2973 for efficient sucrose secretion. Second, the sucrose catabolic pathway and malonyl-CoA-dependent 3-HP biosynthetic pathway were introduced into E. coli BL21 (DE3) for heterologous biosynthesis of 3-HP from sucrose. By optimizing the cultivation temperature from 37 to 30 °C, a stable artificial consortium system was constructed with the capability of producing 3-HP at up to 68.29 mg/L directly from CO2. In addition, cell growth of S. elongatus UTEX 2973 in the consortium was enhanced, probably due to the quick quenching of reactive oxygen species (ROS) in the system by E. coli, which in turn improved the photosynthesis of cyanobacteria. Conclusion The study demonstrated the feasibility of the one-step conversion of sucrose to fine chemicals using an artificial consortium system. The study also confirmed that heterotrophic bacteria could promote the cell growth of cyanobacteria by relieving oxidative stress in this microbial consortium, which further suggests the potential value of this system for future industrial applications.

中文翻译:

基于快速生长的蓝藻细长聚球藻 UTEX 2973 的人工联合体的构建和分析,以利用 CO2 生产平台化学 3-羟基丙酸。

背景蓝藻碳水化合物,例如蔗糖,被认为是潜在的可再生原料,以支持燃料和化学品的生产。然而,这些碳水化合物的分离和纯化过程会增加化学品的生产成本。已提出共培养发酵作为利用这些蓝藻碳水化合物的有效且经济的方式。然而,关于应用共培养系统实现平台化学品绿色生物合成的研究仍然很少。结果 在这项研究中,我们通过构建由快速生长的蓝藻细长聚球藻UTEX 2973和大肠杆菌组成的微生物联合体,依次生产蔗糖和平台化学品3-羟基丙酸(3- HP) 在光合自养生长条件下从 CO2 中提取。首先,努力在 S. elongatus UTEX 2973 中在强启动子 P cpc560 下过表达蔗糖通透酶编码基因 cscB 以实现有效的蔗糖分泌。其次,将蔗糖分解代谢途径和丙二酰辅酶A依赖性3-HP生物合成途径引入大肠杆菌BL21(DE3),用于从蔗糖异源生物合成3-HP。通过将培养温度从 37°C 优化到 30°C,构建了一个稳定的人工联合系统,能够直接从 CO2 生产高达 68.29 mg/L 的 3-HP。此外,该联合体中 S. elongatus UTEX 2973 的细胞生长得到了增强,这可能是由于大肠杆菌对系统中活性氧 (ROS) 的快速淬灭,进而改善了蓝藻的光合作用。结论 该研究证明了使用人工联合系统将蔗糖一步转化为精细化学品的可行性。该研究还证实,异养细菌可以通过缓解这种微生物群落的氧化应激来促进蓝藻的细胞生长,这进一步表明了该系统在未来工业应用中的潜在价值。S. elongatus UTEX 2973 在联合体中的细胞生长得到了增强,这可能是由于大肠杆菌对系统中活性氧 (ROS) 的快速淬灭,进而改善了蓝藻的光合作用。结论 该研究证明了使用人工联合系统将蔗糖一步转化为精细化学品的可行性。该研究还证实,异养细菌可以通过缓解这种微生物群落的氧化应激来促进蓝藻的细胞生长,这进一步表明了该系统在未来工业应用中的潜在价值。S. elongatus UTEX 2973 在联合体中的细胞生长得到了增强,这可能是由于大肠杆菌对系统中活性氧 (ROS) 的快速淬灭,进而改善了蓝藻的光合作用。结论 该研究证明了使用人工联合系统将蔗糖一步转化为精细化学品的可行性。该研究还证实,异养细菌可以通过缓解这种微生物群落的氧化应激来促进蓝藻的细胞生长,这进一步表明了该系统在未来工业应用中的潜在价值。结论 该研究证明了使用人工联合系统将蔗糖一步转化为精细化学品的可行性。该研究还证实,异养细菌可以通过缓解这种微生物群落的氧化应激来促进蓝藻的细胞生长,这进一步表明了该系统在未来工业应用中的潜在价值。结论 该研究证明了使用人工联合系统将蔗糖一步转化为精细化学品的可行性。该研究还证实,异养细菌可以通过缓解这种微生物群落的氧化应激来促进蓝藻的细胞生长,这进一步表明了该系统在未来工业应用中的潜在价值。
更新日期:2020-05-06
down
wechat
bug