当前位置: X-MOL 学术Comput. Method Biomech. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using artificial neural networks to predict impingement and dislocation in total hip arthroplasty
Computer Methods in Biomechanics and Biomedical Engineering ( IF 1.6 ) Pub Date : 2020-05-04 , DOI: 10.1080/10255842.2020.1757661
D Alastruey-López 1 , L Ezquerra 2 , B Seral 1, 3 , M A Pérez 1
Affiliation  

Abstract Dislocation after total hip arthroplasty (THA) remains a major issue and an important post-surgical complication. Impingement and subsequent dislocation are influenced by the design (head size) and position (anteversion and abduction angles) of the acetabulum and different movements of the patient, with external extension and internal flexion the most critical movements. The aim of this study is to develop a computational tool based on a three-dimensional (3D) parametric finite element (FE) model and an artificial neural network (ANN) to assist clinicians in identifying the optimal prosthesis design and position of the acetabular cup to reduce the probability of impingement and dislocation. A 3D parametric model of a THA was used. The model parameters were the femoral head size and the acetabulum abduction and anteversion angles. Simulations run with this parametric model were used to train an ANN, which predicts the range of movement (ROM) before impingement and dislocation. This study recreates different configurations and obtains absolute errors lower than 5.5° between the ROM obtained from the FE simulations and the ANN predictions. The ROM is also predicted for patients who had already suffered dislocation after THA, and the computational predictions confirm the patient’s dislocations. Summarising, the combination of a 3D parametric FE model of a THA and an ANN is a useful computational tool to predict the ROM allowed for different designs of prosthesis heads.

中文翻译:

使用人工神经网络预测全髋关节置换术中的撞击和脱位

摘要 全髋关节置换术(THA)后的脱位仍然是一个主要问题和重要的术后并发症。撞击和随后的脱位受髋臼的设计(头部尺寸)和位置(前倾角和外展角)以及患者不同运动的影响,其中外伸和内屈是最关键的运动。本研究的目的是开发一种基于三维 (3D) 参数有限元 (FE) 模型和人工神经网络 (ANN) 的计算工具,以帮助临床医生确定髋臼杯的最佳假体设计和位置以减少撞击和错位的可能性。使用了 THA 的 3D 参数模型。模型参数是股骨头尺寸和髋臼外展角和前倾角。使用此参数模型运行的模拟用于训练 ANN,该 ANN 在撞击和错位之前预测运动范围 (ROM)。这项研究重新创建了不同的配置,并在从 FE 模拟和 ANN 预测中获得的 ROM 之间获得了低于 5.5° 的绝对误差。还预测了 THA 后已经脱位的患者的 ROM,并且计算预测证实了患者的脱位。总之,THA 的 3D 参数化 FE 模型和 ANN 的组合是一种有用的计算工具,可以预测不同假体头设计所允许的 ROM。这项研究重新创建了不同的配置,并在从 FE 模拟和 ANN 预测中获得的 ROM 之间获得了低于 5.5° 的绝对误差。还预测了 THA 后已经脱位的患者的 ROM,并且计算预测证实了患者的脱位。总之,THA 的 3D 参数化 FE 模型和 ANN 的组合是一种有用的计算工具,可以预测不同假体头设计所允许的 ROM。这项研究重新创建了不同的配置,并在从 FE 模拟和 ANN 预测中获得的 ROM 之间获得了低于 5.5° 的绝对误差。还预测了 THA 后已经脱位的患者的 ROM,并且计算预测证实了患者的脱位。总之,THA 的 3D 参数化 FE 模型和 ANN 的组合是一种有用的计算工具,可以预测不同假体头设计所允许的 ROM。
更新日期:2020-05-04
down
wechat
bug