当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed.
Plant Biotechnology Journal ( IF 13.8 ) Pub Date : 2020-05-04 , DOI: 10.1111/pbi.13396
Haitao Li 1, 2 , Hui Feng 1 , Chaocheng Guo 1 , Shanjing Yang 1 , Wan Huang 1 , Xiong Xiong 3 , Jianxiao Liu 1 , Guoxing Chen 1 , Qian Liu 3 , Lizhong Xiong 1 , Kede Liu 1 , Wanneng Yang 1
Affiliation  

Rapeseed is the second most important oil crop species and is widely cultivated worldwide. However, overcoming the ‘phenotyping bottleneck’ has remained a significant challenge. A clear goal of high‐throughput phenotyping is to bridge the gap between genomics and phenomics. In addition, it is important to explore the dynamic genetic architecture underlying rapeseed plant growth and its contribution to final yield. In this work, a high‐throughput phenotyping facility was used to dynamically screen a rapeseed intervarietal substitution line population during two growing seasons. We developed an automatic image analysis pipeline to quantify 43 dynamic traits across multiple developmental stages, with 12 time points. The time‐resolved i‐traits could be extracted to reflect shoot growth and predict the final yield of rapeseed. Broad phenotypic variation and high heritability were observed for these i‐traits across all developmental stages. A total of 337 and 599 QTLs were identified, with 33.5% and 36.1% consistent QTLs for each trait across all 12 time points in the two growing seasons, respectively. Moreover, the QTLs responsible for yield indicators colocalized with those of final yield, potentially providing a new mechanism of yield regulation. Our results indicate that high‐throughput phenotyping can provide novel insights into the dynamic genetic architecture of rapeseed growth and final yield, which would be useful for future genetic improvements in rapeseed.

中文翻译:

高通量表型加速了植物生长动态遗传结构的解剖,提高了油菜籽的产量。

油菜籽是第二重要的油料作物品种,在世界范围内广泛种植。但是,克服“表型瓶颈”仍然是一个重大挑战。高通量表型的明确目标是弥合基因组学与表型学之间的鸿沟。此外,重要的是探索油菜植物生长及其对最终产量的贡献的动态遗传结构。在这项工作中,使用了高通量表型分析工具来动态筛选两个生长季节中的油菜品种间替代品系。我们开发了自动图像分析管道,以量化12个时间点跨越多个发育阶段的43个动态特征。可以提取时间分辨的性状,以反映枝条的生长并预测油菜的最终产量。在所有发育阶段均观察到这些特征的广泛表型变异和高遗传力。总共鉴定出337和599个QTL,在两个生长季节的所有12个时间点,每个性状的QTL分别为33.5%和36.1%。此外,负责产量指标的QTL与最终产量指标共存,可能提供一种新的产量调节机制。我们的结果表明,高通量表型可以为油菜籽生长和最终产量的动态遗传结构提供新颖的见解,这对油菜籽的未来遗传改良很有用。在两个生长季节的所有12个时间点,每个性状的1%一致性QTL。此外,负责产量指标的QTL与最终产量指标共存,可能提供一种新的产量调节机制。我们的结果表明,高通量表型可以为油菜生长和最终产量的动态遗传结构提供新颖的见解,这对油菜籽的未来遗传改良很有用。在两个生长季节的所有12个时间点,每个性状的1%一致性QTL。此外,负责产量指标的QTL与最终产量指标共存,可能提供一种新的产量调节机制。我们的结果表明,高通量表型可以为油菜籽生长和最终产量的动态遗传结构提供新颖的见解,这对油菜籽的未来遗传改良很有用。
更新日期:2020-05-04
down
wechat
bug