当前位置: X-MOL 学术Phys. Status Solidi. Rapid Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyperbolic Bismuth–Dielectric Structure for Terahertz Photonics
Physica Status Solidi-Rapid Research Letters ( IF 2.8 ) Pub Date : 2020-05-12 , DOI: 10.1002/pssr.202000093
Anton Zaitsev 1 , Petr Demchenko 1 , Elena Makarova 2 , Anastasiia Tukmakova 2 , Natallya Kablukova 3, 4 , Aleksei Asach 2 , Anna Novotelnova 2 , Mikhail Khodzitsky 1
Affiliation  

Hyperbolic medium is a special class of strongly anisotropic materials described by diagonal permittivity tensor with the principal components being of the opposite signs, which results in a hyperbolic shape of isofrequency contours. These media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties and applications such as negative refraction, subwavelength imaging, radiative heat transfer manipulation, enhancing spontaneous emission rate (Purcell factor), biosensing, and nanoscale light confinement. Hyperbolic metamaterials have been experimentally realized for optical, infrared, and microwave frequency ranges. For the terahertz (THz) frequency range, graphene‐based and bismuth‐based media are only theoretically predicted to have a hyperbolic dispersion relation. Herein, the experimental evidence of such dispersion in bismuth–dielectric materials at THz frequencies is shown. THz waveforms transmitted through ultrathin bismuth film/dielectric substrate structures are measured and the negative time delay caused by transition between the elliptic and hyperbolic dispersion at bismuth thickness increase is revealed. In the hyperbolic regime, the switching between effective near‐zero and negative refractive index regime is demonstrated, which depends on the bismuth film thickness and dielectric substrate optical properties. The outcomes demonstrate the possibility for realizing easy planar hyperbolic media for THz photonics, sensing, imaging, and communication systems.

中文翻译:

太赫兹光子学的双曲铋介电结构

双曲介质是一类特殊的强各向异性材料,用对角电容张量来描述,其主要成分具有相反的符号,从而导致等频轮廓呈双曲线形状。这些介质以极大的波矢量支持正在传播的电磁波,这些波矢量具有独特的光学特性和应用,例如负折射,亚波长成像,辐射传热操纵,增强自发发射率(赛尔因子),生物传感和纳米级光限制。已经在光学,红外和微波频率范围内通过实验实现了双曲线超材料。对于太赫兹(THz)频率范围,仅从理论上预测基于石墨烯和基于铋的介质具有双曲线弥散关系。在这里 显示了在THz频率下这种在铋介电材料中的弥散的实验证据。测量通过超薄铋膜/介电基板结构传输的太赫兹波形,并揭示了铋厚度增加时椭圆形和双曲线色散之间的过渡所引起的负时延。在双曲线状态下,有效的近零折射率状态和负折射率状态之间的转换被证明,这取决于铋膜的厚度和介电基片的光学性能。结果证明了为太赫兹光子学,传感,成像和通信系统实现简单的平面双曲介质的可能性。测量通过超薄铋膜/介电基板结构传输的太赫兹波形,并揭示了铋厚度增加时椭圆形和双曲线色散之间的过渡所引起的负时延。在双曲线体系中,有效的近零折射率体系和负折射率体系之间的切换被证明,这取决于铋膜的厚度和介电基片的光学性能。结果证明了为太赫兹光子学,传感,成像和通信系统实现简单的平面双曲介质的可能性。测量通过超薄铋膜/介电基板结构传输的太赫兹波形,并揭示了铋厚度增加时椭圆形和双曲线色散之间的过渡所引起的负时延。在双曲线体系中,有效的近零折射率体系和负折射率体系之间的切换被证明,这取决于铋膜的厚度和介电基片的光学性能。结果证明了为太赫兹光子学,传感,成像和通信系统实现简单的平面双曲介质的可能性。证明了有效的近零折射率和负折射率之间的切换,这取决于铋膜的厚度和介电基片的光学性能。结果证明了为太赫兹光子学,传感,成像和通信系统实现简单的平面双曲介质的可能性。证明了有效的近零折射率和负折射率之间的切换,这取决于铋膜的厚度和介电基片的光学性能。结果证明了为太赫兹光子学,传感,成像和通信系统实现简单的平面双曲介质的可能性。
更新日期:2020-05-12
down
wechat
bug