当前位置: X-MOL 学术Exp. Brain Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Velocity influences the relative contributions of visual and vestibular cues to self-acceleration.
Experimental Brain Research ( IF 2 ) Pub Date : 2020-05-05 , DOI: 10.1007/s00221-020-05824-9
Darren M Kenney 1 , Shannon O'Malley 1 , Hannah M Song 1 , Ben Townsend 1 , Martin von Mohrenschildt 2 , Judith M Shedden 1
Affiliation  

Self-motion perception is based on the integration of visual (optic flow) and vestibular (inertial) sensory information. Previous research has shown that the relative contribution of visual and vestibular cues can change in real time based on the reliability of that information. The present study assessed whether initial velocity and acceleration magnitude influence the relative contribution of these cues to the detection of self-acceleration. Participants performed a simple response time task with visual and vestibular self-acceleration cues as targets. Visual optic flow was presented at three possible initial velocities of 3, 9, or 15 m/s, and accelerated to result in three possible final velocities of 21, 27, or 33 m/s. Corresponding vestibular cues were presented at magnitudes between 0.01 and 0.04 g. The self-acceleration cues were presented at three possible stimulus onset asynchronies (SOAs): visual-first (by 100 ms), in-sync, and vestibular-first (by 100 ms). We found that presenting the cues in-sync resulted in the fastest responses across all velocities and acceleration magnitudes. Interestingly, presenting the visual cue first resulted in a relative advantage over vestibular-first at the slowest initial velocity of 3 m/s, and vice versa for the fastest initial velocity of 15 m/s. The fastest overall responses for visual-first and in-sync were observed at 9 m/s. The present results support the hypothesis that velocity of optic flow can alter the relative contribution of visual and vestibular cues to the detection of self-acceleration.

中文翻译:

速度影响视觉和前庭提示对自我加速的相对贡献。

自我运动知觉基于视觉(光流)和前庭(惯性)感官信息的整合。先前的研究表明,视觉和前庭提示的相对贡献可以基于该信息的可靠性实时变化。本研究评估了初始速度和加速度大小是否会影响这些提示对自加速的相对贡献。参与者以视觉和前庭自我加速提示为目标,执行了一个简单的响应时间任务。视觉光流以3、9或15 m / s的三个可能的初始速度呈现,并被加速以导致21、27或33 m / s的三个可能的最终速度。相应的前庭提示出现在0.01到0.04 g之间。以三种可能的刺激发作异步(SOA)呈现自我加速提示:视觉优先(100 ms),同步和前庭优先(100 ms)。我们发现,同步显示提示会在所有速度和加速度范围内产生最快的响应。有趣的是,首先呈现视觉提示在3 m / s的最慢初始速度下比前庭在先具有相对优势,反之亦然,在15 m / s的最快初始速度下呈现相对优势。视觉优先和同步同步的最快总体响应速度为9 m / s。目前的结果支持这样的假说,即光流速度可以改变视觉和前庭提示对自我加速检测的相对贡献。前庭优先(100 ms)。我们发现,同步显示提示会在所有速度和加速度范围内产生最快的响应。有趣的是,首先呈现视觉提示在3 m / s的最慢初始速度下比前庭在先具有相对优势,反之亦然,在15 m / s的最快初始速度下呈现相对优势。视觉优先和同步同步的最快总体响应速度为9 m / s。目前的结果支持这样的假说,即光流速度可以改变视觉和前庭提示对自我加速检测的相对贡献。前庭优先(100 ms)。我们发现,同步显示提示会在所有速度和加速度范围内产生最快的响应。有趣的是,在3m / s的最慢初始速度下,首先呈现视觉提示会比前庭优先产生相对优势,反之亦然,在15m / s的最快初始速度下呈现视觉提示。视觉优先和同步同步的最快总体响应速度为9 m / s。目前的结果支持这样的假设,即光流速度可以改变视觉和前庭提示对自加速检测的相对贡献。首先呈现视觉提示会在3 m / s的最慢初始速度下获得比前庭在先的相对优势,反之亦然,在15 m / s的最快初始速度下呈现相对优势。视觉优先和同步同步的整体响应速度最快,为9 m / s。目前的结果支持这样的假说,即光流速度可以改变视觉和前庭提示对自我加速检测的相对贡献。首先呈现视觉提示会在3 m / s的最慢初始速度下获得比前庭在先的相对优势,反之亦然,在15 m / s的最快初始速度下呈现相对优势。视觉优先和同步同步的最快总体响应速度为9 m / s。目前的结果支持这样的假说,即光流速度可以改变视觉和前庭提示对自我加速检测的相对贡献。
更新日期:2020-05-05
down
wechat
bug