当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of nanocomposite collagen/ HA/β-TCP scaffolds with tailored gradient porosity and permeability using vitamin E.
Journal of Biomedical Materials Research Part A ( IF 4.9 ) Pub Date : 2020-05-04 , DOI: 10.1002/jbm.a.36990
Mehdi Ebrahimi 1 , Michael Botelho 1 , William Lu 2 , Naruporn Monmaturapoj 3
Affiliation  

The production of the biomimetic scaffolds with well‐designed porosity parameters is a critical and challenging factor in biomaterials processing. The porosity parameters (i.e., pore size, pore shape, and distribution pattern) impact scaffold permeability, proteins/cells infiltration, and angiogenesis. This study introduced a new approach for the production of gradient porous nanocomposite scaffolds with controllable porosity and permeability using basic biomaterials of collagen and nanobiphasic calcium phosphate (nBCP) powder consisting of nano HA/β‐TCP. A modified freeze‐drying method (i.e., variables; collagen/nBCP ratio and quenching rates) was integrated for the first time with the chemical foaming method with the use of vitamin E as a potential surfactant and porogen. Vitamin E successfully increased the range of pore size, pore interconnection, and scaffold permeability. Further control of collagen/nBCP ratios and quenching rates allowed modulation of the pore morphology, total porosity, and the surface roughness of the scaffold. Scaffolds produced using vitamin E with collagen/nBCP ratio of 92/8% at −80°C quenching rate displayed a multimodal heterogeneous pore network with a wide range of pore sizes of mostly round/oval and polygonal pore morphology. Furthermore, these scaffolds revealed a more consistent gradient porous network with peripheral large pores—that gradually become smaller toward scaffold central—that produced a significantly higher permeability and better support of initial cellular performances. Accordingly, considering the various potentials of vitamin E, this study would provide promising insight into the production of smart and customized scaffolds for regenerative and therapeutic applications.

中文翻译:

使用维生素 E 开发具有定制梯度孔隙率和渗透率的纳米复合胶原蛋白/HA/β-TCP 支架。

具有精心设计的孔隙率参数的仿生支架的生产是生物材料加工中一个关键且具有挑战性的因素。孔隙率参数(即孔径、孔形状和分布模式)影响支架渗透性、蛋白质/细胞浸润和血管生成。本研究介绍了一种使用胶原蛋白和由纳米 HA/β-TCP 组成的纳米双相磷酸钙 (nBCP) 粉末的基本生物材料生产具有可控孔隙率和渗透率的梯度多孔纳米复合支架的新方法。改进的冷冻干燥方法(即变量;胶原蛋白/nBCP 比率和淬灭率)首次与化学发泡方法相结合,使用维生素 E 作为潜在的表面活性剂和致孔剂。维生素E成功地增加了孔径范围,孔互连和支架渗透性。进一步控制胶原蛋白/nBCP 比率和淬火速率可以调节支架的孔形态、总孔隙率和表面粗糙度。在-80°C 淬火速率下,使用胶原蛋白/nBCP 比率为 92/8% 的维生素 E 生产的支架显示出多模态异质孔网络,孔径范围广泛,主要是圆形/椭圆形和多边形孔形态。此外,这些支架显示出更一致的梯度多孔网络,具有周边大孔——朝向支架中心逐渐变小——产生显着更高的渗透性和更好的初始细胞性能支持。因此,考虑到维生素 E 的各种潜力,
更新日期:2020-05-04
down
wechat
bug