当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lifting-Force Maximization of a Micropatterned Electroadhesive Device Comparable to the Human-Finger Grip
ACS Applied Electronic Materials ( IF 4.7 ) Pub Date : 2020-05-04 , DOI: 10.1021/acsaelm.0c00188
Kisuk Choi 1 , Sung-Hoon Kim 1 , Uiseok Hwang 1 , Junyoung Kim 2 , In-Kyung Park 1 , Keon-Soo Jang 3 , Hyoung Jin Choi 4 , Hyouk Ryeol Choi 5 , Taesung Kim 5 , Jonghwan Suhr 5 , Jae-Do Nam 1
Affiliation  

Electroadhesion device allows one to pick up almost all of the objects regardless of their shape or type of materials by means of the electrostatic Maxwell force, which is developed due to the dielectric-induced polarization on the subject surface. In this study, we propose the modeling methodology and its experimental verification that could maximize the lifting shear force of the electroadhesive device to reach well over the human-finger grip force, say, ca. 8.9 kPa, which has not been achieved yet in this device system. In this study, we maximized the lifting force up to 33.05 kPa for paper objects by scaling down the electrode pitches in the scale of micrometers while avoiding the voltage breakdown using the boundary-edge-length modeling methodology [Choi, K.; ACS Omega 2019, 4, 7994−8000]. The developed model equation expressed adhesion lifting force as a function of the boundary edge length, applied voltage, and impedance, demonstrating that the model equation agreed well with the experimental output of our device and allowed the lifting force well over the human-finger grip. The in situ charge-transfer resistance measurement value of the impedance analysis (RCT), indicating the amount of polarization, was decreased in the order of paper and glass, and it was clearly related to the enhanced lifting force of the two types of objects (23.9 and 50.0 kPa, respectively). Hence, the impedance analysis could quantify the magnitude of polarizations and the amount of induced charges of objects while in contact with the device.

中文翻译:

与人手指握力相当的微图案电胶装置的提升力最大化

电粘附装置允许人们通过静电麦克斯韦力来拾取几乎所有物体,而不论它们的形状或材料类型如何,该静电麦克斯韦力是由于受电体表面上的介电感应极化而产生的。在这项研究中,我们提出了一种建模方法及其实验验证,可以最大程度地提高电胶设备的提升剪切力,使其能够很好地超过人手指的抓握力,例如,大约。8.9 kPa,在此设备系统中尚未实现。在这项研究中,我们通过减小电极间距(以微米为单位),同时通过使用边界边缘长度建模方法来避免电压击穿,从而最大程度地提高了纸类物体的提升力,最高可达33.05 kPa [崔K.; ACS欧米茄 20194,7994-8000]。所开发的模型方程式将附着力提升力表示为边界边缘长度,施加电压和阻抗的函数,证明该模型方程式与我们设备的实验输出非常吻合,并且可以在人手指握持力上很好地提升附着力。阻抗分析的原位电荷转移电阻测量值(R CT表示偏振量的)按纸和玻璃的顺序减小,这显然与两种物体(分别为23.9和50.0 kPa)的提升力有关。因此,阻抗分析可以量化与设备接触时物体的极化强度和感应电荷的数量。
更新日期:2020-06-23
down
wechat
bug