当前位置: X-MOL 学术J. Biomol. NMR › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deleterious effects of carbon-carbon dipolar coupling on RNA NMR dynamics.
Journal of Biomolecular NMR ( IF 2.7 ) Pub Date : 2020-05-03 , DOI: 10.1007/s10858-020-00315-z
Hyeyeon Nam 1 , Owen Becette 1 , Regan M LeBlanc 1, 2 , Daniel Oh 1 , David A Case 3 , Theodore K Dayie 1
Affiliation  

Many regulatory RNAs undergo dynamic exchanges that are crucial for their biological functions and NMR spectroscopy is a versatile tool for monitoring dynamic motions of biomolecules. Meaningful information on biomolecular dynamics requires an accurate measurement of relaxation parameters such as longitudinal (R1) rates, transverse (R2) rates and heteronuclear Overhauser effect (hNOE). However, earlier studies have shown that the large 13C-13C interactions complicate analysis of the carbon relaxation parameters. To investigate the effect of 13C-13C interactions on RNA dynamic studies, we performed relaxation measurements on various RNA samples with different labeling patterns and compared these measurements with the computational simulations. For uniformly labeled samples, contributions of the neighboring carbon to R1 measurements were observed. These contributions increased with increasing magnetic field and overall correlation time ([Formula: see text]) for R1 rates, necessitating more careful analysis for uniformly labeled large RNAs. In addition, the hNOE measurements were also affected by the adjacent carbon nuclei. Unlike R1 rates, R1ρ rates showed relatively good agreement between uniformly- and site-selectively labeled samples, suggesting no dramatic effect from their attached carbon, in agreement with previous observations. Overall, having more accurate rate measurements avoids complex analysis and will be a key for interpreting 13C relaxation rates for molecular motion that can provide valuable insights into cellular molecular recognition events.

中文翻译:

碳-碳偶极耦合对RNA NMR动力学的有害影响。

许多调节性RNA经历了对其生物学功能至关重要的动态交换,而NMR光谱学是监测生物分子动态运动的通用工具。有关生物分子动力学的有意义的信息需要精确测量松弛参数,例如纵向(R1)速率,横向(R2)速率和异核Overhauser效应(hNOE)。但是,较早的研究表明,较大的13C-13C相互作用使碳弛豫参数的分析复杂化。为了研究13C-13C相互作用对RNA动力学研究的影响,我们对具有不同标记模式的各种RNA样品进行了弛豫测量,并将这些测量结果与计算模拟进行了比较。对于均匀标记的样品,观察到相邻碳对R1测量的贡献。这些贡献随着磁场的增加和R1速率的整体相关时间(公式)的增加而增加,因此需要对仔细标记的大RNA进行更仔细的分析。此外,hNOE测量值还受到相邻碳核的影响。与R1速率不同,R1ρ速率在均匀标记的和位点选择性标记的样品之间显示出相对较好的一致性,这表明它们所附着的碳没有显着影响,这与以前的观察一致。总体而言,进行更精确的速率测量可以避免复杂的分析,并且将成为解释分子运动的13 C弛豫速率的关键,可以为细胞分子识别事件提供有价值的见解。必须对统一标记的大RNA进行更仔细的分析。此外,hNOE测量值还受到相邻碳核的影响。与R1率不同,R1ρ率在均匀标记的和位点选择性标记的样品之间显示出相对较好的一致性,与先前的观察结果一致,表明其附着的碳没有显着影响。总的来说,具有更准确的速率测量结果可以避免复杂的分析,并且将成为解释分子运动的13C弛豫速率的关键,可以为细胞分子识别事件提供有价值的见解。必须对统一标记的大RNA进行更仔细的分析。此外,hNOE测量值还受到相邻碳核的影响。与R1率不同,R1ρ率在均匀标记的和位点选择性标记的样品之间显示出相对较好的一致性,与先前的观察结果一致,表明其附着的碳没有显着影响。总体而言,进行更精确的速率测量可以避免复杂的分析,并且将成为解释分子运动的13 C弛豫速率的关键,可以为细胞分子识别事件提供有价值的见解。与先前的观察结果一致,表明它们的附着碳没有显着影响。总体而言,进行更精确的速率测量可以避免复杂的分析,并且将成为解释分子运动的13 C弛豫速率的关键,可以为细胞分子识别事件提供有价值的见解。与先前的观察结果一致,表明它们的附着碳没有显着影响。总体而言,进行更精确的速率测量可以避免复杂的分析,并且将成为解释分子运动的13 C弛豫速率的关键,可以为细胞分子识别事件提供有价值的见解。
更新日期:2020-05-03
down
wechat
bug