当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon‐Coated SnS Nanosheets Supported on Porous Microspheres as Negative Electrode Material for Sodium‐Ion Batteries
Energy Technology ( IF 3.8 ) Pub Date : 2020-05-01 , DOI: 10.1002/ente.202000258
Suning Gao 1 , Liangtao Yang 2, 3 , Zaichun Liu 4 , Jie Shao 5 , Qunting Qu 5 , Masud Hossain 4 , Yuping Wu 4 , Philipp Adelhelm 2, 3 , Rudolf Holze 1, 4, 6
Affiliation  

SnS has outstanding theoretical capacity and is a promising electrode material for sodium‐ion batteries. However, intrinsic low conductivity and huge volume changes upon sodium extraction/insertion limit its application. Herein, hierarchical hollow carbon spheres covered with S,N‐doped carbon‐coated SnS nanosheets synthesized by a multistep process are reported, including a hard sacrificial template, hydrothermal reaction, and annealing treatment. The prepared C@SnS@C samples are characterized by X‐ray diffraction, scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy. The nanosized SnS provides capacity; S,N‐doped carbon coating protects the integrated structure. Consequently, due to the compositional and structural merits, the optimized electrode has a high specific capacity of around 420 mAh g−1 at 0.2 A g−1, high rate performance (200 mAh g−1 at 10 A g−1), and good cycling stability with 95% (i.e., 305 mAh g−1 at 0.5 A g−1) of the initial capacitance after 100 cycles. Kinetic analyses reveal that a substantial capacitive contribution results in better rate performance of the C@SnS@C electrode.

中文翻译:

多孔微球支撑的碳包覆SnS纳米片作为钠离子电池的负极材料

SnS具有出色的理论容量,是一种有前景的钠离子电池电极材料。然而,钠萃取/插入时固有的低电导率和巨大的体积变化限制了其应用。本文报道了通过多步法合成的覆盖有S,N掺杂碳包覆的SnS纳米片的分层空心碳球,包括硬牺牲模板,水热反应和退火处理。制备的C @ SnS @ C样品的特征在于X射线衍射,扫描电子显微镜,高分辨率透射电子显微镜和X射线光电子能谱。纳米级SnS可提供容量;S,N掺杂碳涂层可保护集成结构。因此,由于组成和结构上的优点,-1 0.2 A G -1,高倍率性能(200毫安克-1以10 A G -1),和良好的循环稳定性为95%(即,305毫安克-1 0.5 A G -1)的100次循环后的初始电容。动力学分析表明,大量的电容贡献导致C @ SnS @ C电极具有更好的倍率性能。
更新日期:2020-07-02
down
wechat
bug