当前位置: X-MOL 学术IEEE Instrum. Meas. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The potential of IoT for instrumentation and measurement
IEEE Instrumentation & Measurement Magazine ( IF 2.1 ) Pub Date : 2020-05-01 , DOI: 10.1109/mim.2020.9082794
Boon-Yaik Ooi 1 , Shervin Shirmohammadi 2
Affiliation  

It is rare for someone in the engineering or science fields not to have heard of the Internet of Things (IoT). IoT has been disrupting many industries by providing an unprecedented approach for a (potentially large) number of distributed components connected over a network to collect data, collaborate, and perform tasks with almost no human intervention. Spending in IoT is forecasted to reach US $1 trillion by 2022 [1] and is considered to be one of the core enabling technologies behind the fourth industrial revolution. But what is IoT really? The deep understanding of IoT and therefore its definition are still evolving. Meanwhile, IEEE defines an IoT system as “a system of entities (including cyber-physical devices, information resources, and people) that exchange information and interact with the physical world by sensing, processing information, and actuating” [2]. Furthermore, the “Thing” in IoT can be defined as “an IoT component or IoT system that has functions, properties and ways of information exchange” [2]. The exact interpretation of the “Thing,” and not the “Internet” part which has existed for many years, is causing IoT's definition to still evolve [3]. In essence, the components of an IoT system interact with each other to fulfill the goal for which the system has been designed. For example, in a smart home, an IoT system consisting of interconnected thermostats, switches, alarms, triggers, cameras, sensors, and actuators can autonomously control lighting, temperature, ambience, and security based on the inhabitants' observed behaviors, leading to more efficiency, comfort, and energy savings. Our transportation systems can benefit from an IoT consisting of connected vehicles, drivers, pedestrians, and traffic infrastructure (signs, lights, roads, etc.) for more efficient traffic routing, road assistance, emergency response, parking support, and toll collection. Or, in an industrial setting, IoT can enable the integration of manufacturing machines or robots equipped with instrumentation, sensing, processing, communication, and collaboration, leading to more efficiency and profitability in the management of equipment, assets, processes, and produced goods. This Industrial IoT, also known as IIoT, is of particular interest, since it is a core enabling technology behind Industry 4.0, estimated to generate a US $12 trillion market by 2030 [4].

中文翻译:

物联网在仪器和测量方面的潜力

工程或科学领域的人很少听说过物联网 (IoT)。物联网为通过网络连接的(可能很大)数量的分布式组件提供了一种前所未有的方法,以在几乎没有人工干预的情况下收集数据、协作和执行任务,从而颠覆了许多行业。到 2022 年,物联网支出预计将达到 1 万亿美元 [1],被认为是第四次工业革命背后的核心使能技术之一。但物联网究竟是什么?对物联网的深刻理解及其定义仍在不断发展。同时,IEEE 将物联网系统定义为“通过感知、处理信息、并启动”[2]。此外,物联网中的“事物”可以定义为“具有功能、属性和信息交换方式的物联网组件或物联网系统”[2]。对“事物”的准确解释,而不是已经存在多年的“互联网”部分,导致物联网的定义仍在不断发展[3]。本质上,物联网系统的组件相互交互以实现系统设计的目标。例如,在智能家居中,由互连的恒温器、开关、警报器、触发器、摄像头、传感器和执行器组成的物联网系统可以根据居民观察到的行为自主控制照明、温度、氛围和安全,从而导致更多效率、舒适度和节能。我们的交通系统可以从由互联车辆、驾驶员、行人和交通基础设施(标志、灯、道路等)组成的物联网中受益,以实现更高效的交通路线、道路援助、应急响应、停车支持和收费。或者,在工业环境中,物联网可以实现配备仪器、传感、处理、通信和协作的制造机器或机器人的集成,从而提高设备、资产、流程和产品管理的效率和盈利能力。这种工业物联网(也称为 IIoT)特别令人感兴趣,因为它是工业 4.0 背后的核心使能技术,预计到 2030 年将产生 12 万亿美元的市场 [4]。) 以实现更高效的交通路线、道路援助、应急响应、停车支持和收费。或者,在工业环境中,物联网可以实现配备仪器、传感、处理、通信和协作的制造机器或机器人的集成,从而提高设备、资产、流程和产品管理的效率和盈利能力。这种工业物联网(也称为 IIoT)特别令人感兴趣,因为它是工业 4.0 背后的核心使能技术,预计到 2030 年将产生 12 万亿美元的市场 [4]。) 以实现更高效的交通路线、道路援助、应急响应、停车支持和收费。或者,在工业环境中,物联网可以实现配备仪器、传感、处理、通信和协作的制造机器或机器人的集成,从而提高设备、资产、流程和产品管理的效率和盈利能力。这种工业物联网(也称为 IIoT)特别令人感兴趣,因为它是工业 4.0 背后的核心使能技术,预计到 2030 年将产生 12 万亿美元的市场 [4]。和协作,从而提高设备、资产、流程和产品管理的效率和盈利能力。这种工业物联网(也称为 IIoT)特别令人感兴趣,因为它是工业 4.0 背后的核心使能技术,预计到 2030 年将产生 12 万亿美元的市场 [4]。和协作,从而提高设备、资产、流程和产品管理的效率和盈利能力。这种工业物联网(也称为 IIoT)特别令人感兴趣,因为它是工业 4.0 背后的核心使能技术,预计到 2030 年将产生 12 万亿美元的市场 [4]。
更新日期:2020-05-01
down
wechat
bug