当前位置: X-MOL 学术Int. J. Appl. Glass Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A carbon‐nanofiber glass composite with high electrical conductivity
International Journal of Applied Glass Science ( IF 2.1 ) Pub Date : 2020-02-20 , DOI: 10.1111/ijag.14607
Guangming Tao 1, 2 , Shi Chen 1 , Sudeep J. Pandey 1 , Felix A. Tan 1 , Heike Ebendorff‐Heidepriem 3 , Michael Molinari 4 , Ayman F. Abouraddy 1, 5 , Romain M. Gaume 1, 5, 6
Affiliation  

The use of oxide glasses is pervasive throughout everyday amenities and commodities. Such glasses are typically electrical insulators, and endowing them with electrical conductivity—without changing their salutary mechanical properties, weight, or thermoformability—enables new applications in multifunctional utensils, smart windows, and automotive parts. Previous strategies to impart electrical conductivity include modifying the glass composition or forming a solid‐in‐solid composite of the glass and a conductive phase. Here, we demonstrate—using the latter strategy—the highest reported room‐temperature electrical conductivity in a bulk oxide glass (~1800 S/m) corresponding to the theoretical limit for the loading fraction of the conductive phase. This is achieved through glass sintering of a mixture of carbon nanofibers (CNFs) and oxide flint (F2) or soda‐lime glasses, with the bulk conductivity further enhanced by a polyethylene‐block‐poly(ethylene glycol) additive. A theoretical model provides predictions that are in excellent agreement with the dependence of conductivity of these composites on the carbon‐loading fraction. Moreover, nanoscale electrical characterization of the composite samples provides evidence for the existence of a connected network of CNFs throughout the bulk. Our results establish a potentially low‐cost approach for producing large volumes of highly conductive glass independently of the glass composition.

中文翻译:

具有高电导率的碳纳米纤维玻璃复合材料

氧化玻璃的使用遍及所有日常设施和商品。这种玻璃通常是电绝缘体,并且不改变其有益的机械性能,重量或可热成型性而赋予其导电性,从而在多功能用具,智能窗户和汽车零件中实现了新的应用。先前赋予导电性的策略包括修改玻璃成分或形成玻璃与导电相的固-固复合材料。在这里,我们证明了使用后一种策略,在块状氧化玻璃中报告的最高室温室温电导率(〜1800 S / m),对应于导电相负载率的理论极限。这是通过对碳纳米纤维(CNF)和氧化fl石(F2)或钠钙玻璃的混合物进行玻璃烧结来实现的,而聚乙烯-嵌段-聚(乙二醇)添加剂可进一步提高整体电导率。一个理论模型提供的预测与这些复合材料的电导率对碳负荷分数的依赖性非常一致。此外,复合样品的纳米级电学表征为整个主体中存在CNF连接网络提供了证据。我们的结果建立了一种潜在的低成本方法,可独立于玻璃成分生产大量高导电玻璃。一个理论模型提供的预测与这些复合材料的电导率对碳负荷分数的依赖性非常一致。此外,复合样品的纳米级电学表征为整个主体中存在CNF连接网络提供了证据。我们的结果建立了一种潜在的低成本方法,可独立于玻璃成分生产大量高导电玻璃。一个理论模型提供的预测与这些复合材料的电导率对碳负荷分数的依赖性非常一致。此外,复合样品的纳米级电学表征为整个主体中存在CNF连接网络提供了证据。我们的结果建立了一种潜在的低成本方法,可独立于玻璃成分生产大量高导电玻璃。
更新日期:2020-02-20
down
wechat
bug