当前位置: X-MOL 学术Dev. Growth Differ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control and design of biosystems
Development, Growth & Differentiation ( IF 2.5 ) Pub Date : 2020-03-18 , DOI: 10.1111/dgd.12658
Yoshihiro Morishita 1 , Tomoya Kitajima 1 , Shunsuke Tagami 1 , Minoru Takasato 1 , Yo Tanaka 1
Affiliation  

Biosystems are dynamic networks driven by cross‐scale interactions between molecules, cells, tissues, organs and organisms. Recent advances in our understanding of the spatiotemporal regulation and organization of biosystems have stimulated exploration of novel approaches to control and design biosystems at multiple biological scales. Such new approaches include artificial cell synthesis, generation of embryoids/organoids, reconstitution and manipulation of life events such as aging and reproduction, and multidisciplinary approaches using theoretical and engineering technologies. These control‐and‐design methodologies are expected to open up a new avenue to understanding life events as well as to provide the basis for novel design strategies in medical sciences.

This review issue of DGD aims at collecting current results on such challenges. Hayashi, Shimamoto, and Nagamatsu (2020) review environmental factors involved in the control of oocyte dormancy, including oxygen concentrations and ECM‐mediated mechanical stress. Uncovering the mechanism of oocyte dormancy will contribute to design novel approaches in reproductive biology and therapy. Hagiwara and Isabel (2020) introduce recent advancements in engineering technologies to control the microenvironment during cell culture, which will provide experimental advantages for maturing organoids as well as for measuring their self‐organization process. Funano, Tanaka, and Tanaka (2020) describe a newly developed methodology for designing cell patterns on a dish/substrate at a high resolution of under a few micrometers with long‐term stability, and also mention those biological applications. Naoki and Matsui (2020) introduce theoretical approaches to investigate noise‐resistant spatial‐patterning mechanisms during organ development, taking somitogenesis as an example. Seirin‐Lee (2020) also reviews, from the theoretical perspective, the mechanism of cell polarity formation, which plays a critical role in controlling asymmetric cell division.

This issue is based on the discussions during the RIKEN BDR symposium 2019 “Control and Design of Biosystems” held on March 25th to 27th, 2019 in RIKEN Center for Biosystems Dynamics Research, Kobe, Japan. RIKEN BDR was launched on April 1, 2018, as a new RIKEN center succeeding the Center for Developmental Biology, Center for Life Science Technologies, and Quantitative Biology Center. The BDR symposium continues in the footsteps of the RIKEN CDB symposium series that was launched in 2003, to foster the global and timely scientific exchange among researchers in the fields of biological studies related with all life stages.



中文翻译:

生物系统的控制与设计

生物系统是由分子,细胞,组织,器官和生物之间的跨尺度相互作用驱动的动态网络。我们对生物系统的时空调节和组织的了解的最新进展激发了探索在多种生物规模上控制和设计生物系统的新颖方法的探索。这些新方法包括人工细胞合成,类胚/类器官的产生,生命事件的重建和操纵(例如衰老和繁殖)以及使用理论和工程技术的多学科方法。这些控制和设计方法有望为理解生命事件开辟一条新途径,并为医学中新颖的设计策略提供基础。

DGD的本期评论旨在收集有关此类挑战的最新结果。Hayashi,Shimamoto和Nagamatsu(2020)综述了控制卵母细胞休眠的环境因素,包括氧浓度和ECM介导的机械应激。揭示卵母细胞休眠的机制将有助于设计生殖生物学和治疗的新方法。Hagiwara和Isabel(2020)介绍了工程技术的最新进展,以控制细胞培养期间的微环境,这将为成熟的类器官以及测量其自组织过程提供实验优势。船野,田中和田中(2020)描述了一种新开发的方法,该方法可以在数微米以下的高分辨率下在碟子/基板上设计细胞图案,并具有长期稳定性,并且还提到了这些生物学应用。Naoki和Matsui(2020)引入了理论方法来研究器官发育过程中抗噪声的空间模式形成机制,并以体发生为例。Seirin-Lee(2020)还从理论角度回顾了细胞极性形成的机制,该机制在控制不对称细胞分裂中起着至关重要的作用。

本期基于2019年3月25日至27日在日本神户RIKEN生物系统动力学研究中心举行的RIKEN BDR 2019年研讨会“生物系统的控制与设计”中的讨论。RIKEN BDR于2018年4月1日启动,是继发展生物学中心,生命科学技术中心和定量生物学中心之后的新RIKEN中心。BDR研讨会继2003年启动的RIKEN CDB研讨会系列之后,继续促进了与生命各个阶段有关的生物学研究领域的研究人员之间的全球及时科学交流。

更新日期:2020-03-18
down
wechat
bug