当前位置: X-MOL 学术Ann. Henri Poincaré › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Threshold Singularities of the Spectral Shift Function for Geometric Perturbations of Magnetic Hamiltonians
Annales Henri Poincaré ( IF 1.5 ) Pub Date : 2020-03-04 , DOI: 10.1007/s00023-020-00904-6
Vincent Bruneau , Georgi Raikov

We consider the Schrödinger operator \(H_0\) with constant magnetic field B of scalar intensity \(b>0\), self-adjoint in \(L^2({{\mathbb {R}}}^3)\), and its perturbations \(H_+\) (resp., \(H_-\)) obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain \(\Omega _{\mathrm{in}} \subset {{\mathbb {R}}}^3\). We introduce the Krein spectral shift functions \(\xi (E;H_\pm ,H_0)\), \(E \ge 0\), for the operator pairs \((H_\pm ,H_0)\) and study their singularities at the Landau levels \(\Lambda _q : = b(2q+1)\), \(q \in {{\mathbb {Z}}}_+\), which play the role of thresholds in the spectrum of \(H_0\). We show that \(\xi (E;H_+,H_0)\) remains bounded as \(E \uparrow \Lambda _q\), \(q \in {{\mathbb {Z}}}_+\), being fixed, and obtain three asymptotic terms of \(\xi (E;H_-,H_0)\) as \(E \uparrow \Lambda _q\), and of \(\xi (E;H_\pm ,H_0)\) as \(E \downarrow \Lambda _q\). The first two divergent terms are independent of the perturbation, while the third one involves the logarithmic capacity of the projection of \(\Omega _{\mathrm{in}}\) onto the plane perpendicular to B.

中文翻译:

电磁哈密顿量的几何扰动的谱位移函数的阈值奇点

我们考虑具有标量强度\(b> 0 \)的恒定磁场B的Schrödinger算子\(H_0 \),在\(L ^ 2({{\\ mathbb {R}}} ^ 3)\)中自伴,以及通过在有界域\(\ Omega _ {\ mathrm {in})的边界上施加Dirichlet(resp。,Neumann)条件获得的扰动\(H _ + \)(resp。,\(H _- \)} \ subset {{\ mathbb {R}}} ^ 3 \)。我们为运算符对\((H_ \ pm,H_0)\)引入了Kerin谱移函数\(\ xi(E; H_ \ pm,H_0)\)\(E \ ge 0 \)并研究它们在Landau层次上的奇点\(\ Lambda _q:= b(2q + 1)\)\(q \ in {{\ mathbb {Z}}} _ + \),在\(H_0 \)的频谱中起阈值的作用。我们表明,\(\ XI(E; H _ +,H_0)\)保持界定为\(E \ UPARROW \ LAMBDA _q \) \(Q \在{{\ mathbb {Z}}} _ + \) ,固定,并获得\(\ xi(E; H _-,H_0)\)的三个渐近项,如\(E \ uparrow \ Lambda _q \)\(\ xi(E; H_ \ pm,H_0) \)作为\(E \ downarrow \ Lambda _q \)。前两个发散项与扰动无关,而第三个发散项涉及\(\ Omega _ {\ mathrm {in}} \)到垂直于平面的投影的对数容量
更新日期:2020-03-04
down
wechat
bug