当前位置: X-MOL 学术Ocean Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An adaptive discontinuous Galerkin method for the simulation of hurricane storm surge
Ocean Dynamics ( IF 2.3 ) Pub Date : 2020-03-21 , DOI: 10.1007/s10236-020-01352-w
Nicole Beisiegel , Stefan Vater , Jörn Behrens , Frédéric Dias

Numerical simulations based on solving the 2D shallow water equations using a discontinuous Galerkin (DG) discretisation have evolved to be a viable tool for many geophysical applications. In the context of flood modelling, however, they have not yet been methodologically studied to a large extent. Systematic model testing is non-trivial as no comprehensive collection of numerical test cases exists to ensure the correctness of the implementation. Hence, the first part of this manuscript aims at collecting test cases from the literature that are generally useful for storm surge modellers and can be used to benchmark codes. On geographic scale, hurricane storm surge can be interpreted as a localised phenomenon making it ideally suited for adaptive mesh refinement (AMR). Past studies employing dynamic AMR have exclusively focused on nested meshes. For that reason, we have developed a DG storm surge model on a triangular and dynamically adaptive mesh. In order to increase computational efficiency, the refinement is driven by physics-based refinement indicators capturing major model sensitivities. Using idealised numerical test cases, we demonstrate the model’s ability to correctly represent all source terms and reproduce known variability of coastal flooding with respect to hurricane characteristics such as size and approach speed. Finally, the adaptive mesh significantly reduces computing time with no effect on storm waves measured at discrete wave gauges just off the coast which shows the model’s potential for use as a robust simulation tool for real-time predictions.

中文翻译:

自适应不连续Galerkin方法模拟飓风风暴潮

基于使用不连续Galerkin(DG)离散化求解2D浅水方程组的数值模拟已发展成为许多地球物理应用的可行工具。但是,在洪水建模的背景下,尚未对其进行大量的方法学研究。系统的模型测试是不平凡的,因为不存在大量的数字测试用例集合来确保实现的正确性。因此,本手稿的第一部分旨在从文献中收集测试案例,这些案例通常对风暴潮建模者有用,并且可以用来对代码进行基准测试。在地理范围内,飓风风暴潮可以解释为一种局部现象,使其非常适合于自适应网格细化(AMR)。过去使用动态AMR的研究仅专注于嵌套网格。因此,我们在三角形的动态自适应网格上开发了DG风暴潮模型。为了提高计算效率,通过基于物理的细化指标捕获主要模型的敏感性来进行细化。使用理想的数值测试案例,我们证明了该模型能够正确表示所有源项,并能够再现沿海洪水相对于飓风特征(例如大小和进近速度)的变化性。最后,自适应网格显着减少了计算时间,而对在海岸附近的离散波表上测得的风暴波没有影响,这表明该模型具有用作实时预测的强大仿真工具的潜力。为了提高计算效率,通过基于物理的细化指标捕获主要模型的敏感性来进行细化。使用理想的数值测试案例,我们证明了该模型能够正确表示所有源项,并能够再现沿海洪水在飓风特征(例如大小和进近速度)方面的已知变化。最后,自适应网格显着减少了计算时间,而对在海岸附近的离散波表上测得的风暴波没有影响,这表明该模型有潜力用作实时预测的可靠仿真工具。为了提高计算效率,通过基于物理的细化指标捕获主要模型的敏感性来进行细化。使用理想的数值测试案例,我们证明了该模型能够正确表示所有源项,并能够再现沿海洪水在飓风特征(例如大小和进近速度)方面的已知变化。最后,自适应网格显着减少了计算时间,而对在海岸附近的离散波表上测得的风暴波没有影响,这表明该模型有潜力用作实时预测的可靠仿真工具。我们证明了该模型能够正确表示所有源项,并能够再现关于飓风特征(例如大小和进近速度)的沿海洪水的已知变化。最后,自适应网格显着减少了计算时间,而对在海岸附近的离散波表上测得的风暴波没有影响,这表明该模型有潜力用作实时预测的可靠仿真工具。我们证明了该模型能够正确表示所有源项,并能够再现关于飓风特征(例如大小和进近速度)的沿海洪水的已知变化。最后,自适应网格显着减少了计算时间,而对在海岸附近的离散波表上测得的风暴波没有影响,这表明该模型有潜力用作实时预测的可靠仿真工具。
更新日期:2020-03-21
down
wechat
bug