当前位置: X-MOL 学术J. Astronaut. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Controller Design of Non-minimum Phase Hypersonic Aircrafts Model based on Quantitative Feedback Theory
The Journal of the Astronautical Sciences ( IF 1.8 ) Pub Date : 2019-07-17 , DOI: 10.1007/s40295-019-00187-y
Zhaoying Li , Wenjie Zhou , Hao Liu

Hypersonic aircrafts are introduced as a platform for cost-efficient access to space. However, challenging problems of control hypersonic aircrafts exist due to aerodynamic parametric uncertainties, external disturbances and unstable internal dynamics. This paper explores how to design and tune a controller with quantitative feedback theory (QFT). Furthermore, robust controllers based on QFT for longitudinal model are designed to solve the non-minimum phase problem and the large aerodynamic parameters uncertainty problem due to complex flight environment. According to the summary of the plant dynamics and control method, different performance specifications are presented and transformed into a set of design criteria in transfer function form as constrains for the controller design. Simulation results obtained with the designed controller and prefilter demonstrate that the designed robust controller can guarantee the stability of hypersonic aircraft model and satisfy the given performance specifications. Simulation comparisons to LQR control approach are performed to demonstrate the advantages of the proposed QFT robust controller.

中文翻译:

基于定量反馈理论的非最小相位超音速飞机模型的鲁棒控制器设计

高超音速飞机被介绍为经济高效地进入太空的平台。然而,由于空气动力学参数不确定性,外部干扰和不稳定的内部动力学,存在控制超音速飞机的挑战性问题。本文探讨了如何使用定量反馈理论(QFT)设计和调整控制器。此外,针对纵向模型设计了基于QFT的鲁棒控制器,以解决非最小相位问题和复杂飞行环境导致的较大的空气动力学参数不确定性问题。根据工厂动力学和控制方法的概述,提出了不同的性能规格,并将其转换为传递函数形式的一组设计准则,以此作为控制器设计的约束。通过设计的控制器和预滤波器获得的仿真结果表明,设计的鲁棒控制器可以保证高超音速飞机模型的稳定性并满足给定的性能规格。进行了与LQR控制方法的仿真比较,以证明所提出的QFT鲁棒控制器的优势。
更新日期:2019-07-17
down
wechat
bug