当前位置: X-MOL 学术Biomed. Microdevices › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid lipid bilayer membrane formation on Parylene coated apertures to perform ion channel analyses.
Biomedical Microdevices ( IF 2.8 ) Pub Date : 2020-04-30 , DOI: 10.1007/s10544-020-0473-y
Tanzir Ahmed 1 , Sander van den Driesche 1 , Jayesh Arun Bafna 2 , Martin Oellers 1 , Roland Hemmler 3 , Karsten Gall 3 , Richard Wagner 2 , Mathias Winterhalter 2 , Michael J Vellekoop 1
Affiliation  

We present a chip design allowing rapid and robust lipid bilayer (LBL) membrane formation using a Parylene coated thin silicon nitride aperture. After bilayer formation, single membrane channels can be reconstituted and characterized by electrophysiology. The ability for robust reconstitution will allow parallelization and enhanced screening of small molecule drugs acting on or permeating across the membrane channel. The aperture was realized on a microfabricated silicon nitride membrane by using standard clean-room fabrication processes. To ensure the lipid bilayer formation, the nitride membrane was coated with a hydrophobic and biocompatible Parylene layer. We tested both Parylene-C and Parylene-AF4. The contact angle measurements on both Parylene types showed very good hydrophobic properties and affinity to lipids. No precoating of the Parylene with an organic solvent is needed to make the aperture lipophilic, in contradiction to Teflon membranes. The chips can be easily placed in an array utilizing a 3D printed platform. Experiments show repetitive LBL formation and destruction (more than 6 times) within a very short time (few seconds). Through measurements we have established that the LBL layers are very thin. This allows the investigation of the fusion process of membrane proteins i.e. outer membrane protein (OmpF) in the LBL within a few minutes.

中文翻译:

在聚对二甲苯涂层的孔上快速形成脂质双层膜,以进行离子通道分析。

我们提出了一种芯片设计,该技术可以使用聚对二甲苯涂层的薄氮化硅孔来形成快速而坚固的脂质双层(LBL)膜。在双层形成之后,可以重构单个膜通道并通过电生理学表征。强大的重构能力将使平行作用和增强对作用于或穿过膜通道的小分子药物的筛选。通过使用标准的洁净室制造工艺,可以在微细加工的氮化硅膜上实现孔径。为了确保脂质双层的形成,在氮化膜上涂覆了疏水且生物相容的聚对二甲苯层。我们测试了Parylene-C和Parylene-AF4。两种聚对二甲苯类型的接触角测量结果均显示出非常好的疏水性和对脂质的亲和力。与聚四氟乙烯膜相反,不需要使用有机溶剂对聚对二甲苯进行预涂层即可使孔具有亲脂性。利用3D打印平台,可以轻松将芯片放置在阵列中。实验表明,在很短的时间内(几秒钟),重复的LBL形成和破坏(超过6次)。通过测量,我们确定了LBL层非常薄。这允许在几分钟内研究膜蛋白即LBL中的外膜蛋白(OmpF)的融合过程。通过测量,我们确定了LBL层非常薄。这允许在几分钟内研究膜蛋白即LBL中的外膜蛋白(OmpF)的融合过程。通过测量,我们确定了LBL层非常薄。这允许在几分钟内研究膜蛋白即LBL中的外膜蛋白(OmpF)的融合过程。
更新日期:2020-04-30
down
wechat
bug