当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-functional Ti3C2Tx MXene for wastewater treatment and electrochemical energy storage
Sustainable Energy & Fuels ( IF 5.6 ) Pub Date : 2020-04-30 , DOI: 10.1039/d0se00448k
Xingxing Zhu 1, 2, 3, 4 , Xinhua Huang 1, 2, 3, 4, 5 , Ruikun Zhao 6, 7, 8, 9 , Kin Liao 7, 8, 9, 10 , Vincent Chan 5, 7, 8, 9
Affiliation  

Multifunctional 2D materials have been exploited for highly intricate applications in engineering and medicine, including energy, bioimaging and drug delivery. In this study, an MXene material, Ti3C2Tx, was developed to play dual functional roles in wastewater treatment and electrochemical energy storage. First, Ti3C2Tx MXene demonstrated its high capacity for the adsorption of selected cationic dyes such as Rhodamine B in aqueous solutions. Meanwhile, both XPS and Raman spectroscopy indicated that Ti3C2Tx hosted the organic dyes in its interlayer voids through intercalation. After the in situ carbonization, conversion of the organic dyes to carbon led to the formation of novel carbon-filled Ti3C2Tx (Ti3C2Tx/C) for electrochemical applications. With the increased interlayer thickness of carbon within Ti3C2Tx/C, the carbon-filled Ti3C2Tx hetero-structure was eventually applied as a supercapacitor electrode; it displayed a high specific capacity of 226 F g−1 at 1 A g−1. Our unique approach of cationic dye adsorption/carbonization significantly enhanced the transport paths of electrolyte ions into the MXene, i.e. it exhibited high performance and cycling stability, with 94% retention over 8000 cycles. Our study paves the way to achieve scalable and environmental friendly processes for the development of high-performance 2D nanomaterials for energy storage.

中文翻译:

双功能Ti3C2Tx MXene用于废水处理和电化学储能

多功能2D材料已被广泛用于工程和医学领域,包括能量,生物成像和药物输送。在这项研究中,开发了一种MXene材料Ti 3 C 2 T x,以在废水处理和电化学能量存储中发挥双重功能。首先,Ti 3 C 2 T x MXene表现出了其在水溶液中吸附选定的阳离子染料(如若丹明B)的高容量。同时,XPS和拉曼光谱均表明Ti 3 C 2 T x通过插层在其层间空隙中占据有机染料。后在原位碳化,有机染料向碳的转化导致形成用于电化学应用的新型碳填充Ti 3 C 2 T x(Ti 3 C 2 T x / C)。随着Ti 3 C 2 T x / C内碳层厚度的增加,最终将填充碳的Ti 3 C 2 T x异质结构用作超级电容器电极。它在1 A g -1下显示出226 F g -1的高比电容。我们独特的阳离子染料吸附/碳化方法极大地增强了电解质离子向MXene的传输路径,它表现出高性能和循环稳定性,在8000个循环中保留了94%。我们的研究为实现可扩展和环保的工艺铺平了道路,以开发用于储能的高性能2D纳米材料。
更新日期:2020-06-30
down
wechat
bug