当前位置: X-MOL 学术Acta Oecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil aggregation, ecosystem engineers and the C cycle
Acta Oecologica ( IF 1.8 ) Pub Date : 2020-04-28 , DOI: 10.1016/j.actao.2020.103561
Patrick Lavelle , Alister Spain , Steven Fonte , Jose Camilo Bedano , Eric Blanchart , Victor Galindo , Michel Grimaldi , Juan Jose Jimenez , Elena Velasquez , Anne Zangerlé

Soil aggregation and its effects on soil C storage have been addressed in thousands of research articles over the last 40 years. Research has been mostly focused on the resistance of aggregates to mechanical disruption and the role of organic matter in aggregate stabilization. On the other hand, relatively little attention has been paid to identifying the microbial, plant root and macro-invertebrate actors and physical processes that continuously create and destroy aggregates. The sum and dynamics of these processes determines the ability of soils to store and conserve C. Understanding the interactions between aggregation dynamics and C transformations in soils therefore requires a precise identification of the agents that produce aggregates and knowledge of the rates of formation and persistence in the pools thus identified.

We propose to separate macro-aggregated components of different, physicogenic and biogenic origins from non-macro-aggregated soil on a morphological basis, using a simple visual technique. The specific biological or physico-chemical agent which produced each individual macro-aggregate can then be determined using Near Infrared Spectroscopy (NIRS). A general description of the distribution and quality of organic matter among the different groups of macro-aggregates can be made. Simple soil re-aggregation or dis-aggregation tests conducted in field conditions further measure the production of different macro-aggregates with time and their mean residence times in the studied soil. Respirometry measurements on each recognized category of macro-aggregates evaluate the respective C losses through respiration. The methods described here will allow the dominant pathways of C flow at a given site to be characterized and possible management options to increase C storage identified. We finally discuss the different assumptions made to build this simple model and offer ways to test the methodology under field conditions.



中文翻译:

土壤聚集,生态系统工程师和碳循环

在过去40年中,成千上万的研究文章已经讨论了土壤聚集及其对土壤C储存的影响。研究主要集中在骨料对机械破坏的抵抗力以及有机质在骨料稳定中的作用。另一方面,在识别持续产生和破坏聚集体的微生物,植物根和大型无脊椎动物行为体以及物理过程方面,人们的关注相对较少。这些过程的总和和动力学决定了土壤储存和养护碳的能力。因此,要了解土壤中的聚集动力学和碳转化之间的相互作用,就需要对产生聚集体的因子进行精确的识别,并了解其形成和持久性的速率。这样确定的池。

我们建议使用一种简单的视觉技术,在形态学基础上从非宏观聚集土壤中分离出不同,物理和生物成因的宏观聚集成分。然后可以使用近红外光谱(NIRS)确定产生每种单独的大型聚集体的特定生物或物理化学试剂。可以对不同组的大型聚集体之间有机物的分布和质量进行一般性描述。在田间条件下进行的简单土壤重新聚集或分解试验,可以进一步测量随时间变化的各种大型聚集体的产量及其在被研究土壤中的平均停留时间。在每个公认的大集合类别上进行的呼吸测定测量均会通过呼吸来评估相应的C损失。此处描述的方法将允许表征给定位置的C流动的主要途径,并确定可能的管理选择以增加C的存储量。最后,我们讨论了构建此简单模型的不同假设,并提供了在现场条件下测试方法的方法。

更新日期:2020-04-28
down
wechat
bug