当前位置: X-MOL 学术J. Forecast. › 论文详情
A hybrid model considering cointegration for interval‐valued pork price forecasting in China
Journal of Forecasting ( IF 1.570 ) Pub Date : 2020-05-09 , DOI: 10.1002/for.2688
Dabin Zhang; Qian Li; Amin W. Mugera; Liwen Ling

Compared with point forecasting, interval forecasting is believed to be more effective and helpful in decision making, as it provides more information about the data generation process. Based on the well‐established “linear and nonlinear” modeling framework, a hybrid model is proposed by coupling the vector error correction model (VECM) with artificial intelligence models which consider the cointegration relationship between the lower and upper bounds (Coin‐AIs). VECM is first employed to fit the original time series with the residual error series modeled by Coin‐AIs. Using pork price as a research sample, the empirical results statistically confirm the superiority of the proposed VECM‐CoinAIs over other competing models, which include six single models and six hybrid models. This result suggests that considering the cointegration relationship is a workable direction for improving the forecast performance of the interval‐valued time series. Moreover, with a reasonable data transformation process, interval forecasting is proven to be more accurate than point forecasting.
更新日期:2020-05-09

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug