当前位置: X-MOL 学术Surf. Interface Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantification of dopant species using atom probe tomography for semiconductor application
Surface and Interface Analysis ( IF 1.7 ) Pub Date : 2019-10-30 , DOI: 10.1002/sia.6706
Wai Kong Yeoh, Shih‐Wei Hung, Shih‐Che Chen, Yi‐Hsiang Lin, Jang Jung Lee

Doping of semiconductors serve various purposes in metal‐oxide‐semiconductor (CMOS) technology, eg, increase carrier concentration and modify electric field distribution. With the scaling down of device and the introduction of three‐dimensional fin field‐effect transistors (FinFET), precise and reliable dopant quantification of concentration at the nano‐scale is critical. Laser‐assisted atom probe tomography (APT) provides a unique approach to characterize and quantify the dopant in three dimensions at sub‐nanometer resolution. Nevertheless, quantification accuracy of APT is strongly influenced by the experimental conditions. Although B quantification has been widely studied, the correlation of B signal loss to B concentration is not yet established. In addition, no phosphorous quantification study has been reported. In this work, we found that, due to B multi‐hit effect in APT, high B dose sample has larger B loading compared with low B dose sample. For standard calibration with minimized impact from multi‐hit effect, we recommend B dose in the range of 1e14 atoms/cm2. Despite the fact that B loading is dose dependent, APT quantification of B achieves precision within 2% to 6% relative standard deviation (RSD), which demonstrates that APT has good accuracy. On the other hand, P quantification suffers from mass interference of 31P+ and 31P22+ at 31 Da resulting in a large loading between APT and secondary ion mass spectrometry (SIMS). Nevertheless, we recommend that 31 Da to be labeled as 31P+ for smaller P variation for the APT analysis.

中文翻译:

使用原子探针层析成像技术对半导体应用中的掺杂物进行定量

半导体掺杂在金属氧化物半导体(CMOS)技术中有多种用途,例如,增加载流子浓度和改变电场分布。随着器件尺寸的缩小和三维鳍式场效应晶体管(FinFET)的引入,精确,可靠地量化纳米级浓度的掺杂剂至关重要。激光辅助原子探针层析成像(APT)提供了一种独特的方法,可在亚纳米分辨率下在三个维度上表征和量化掺杂剂。尽管如此,APT的定量准确性仍受实验条件的强烈影响。尽管已经对B定量进行了广泛的研究,但B信号丢失与B浓度的相关性尚未建立。另外,没有关于磷定量研究的报道。在这项工作中,我们发现,由于APT中的B多击效应,与低B剂量样品相比,高B剂量样品具有更大的B负荷。为了在最小化多击效应影响的情况下进行标准校准,我们建议B剂量在1e14原子/厘米的范围内2。尽管B的上样量与剂量有关,但APT对B的定量仍可达到2%至6%相对标准偏差(RSD)范围内的精度,这表明APT具有良好的准确性。另一方面,P定量在31 Da时受到31 P +31 P 2 2+的质量干扰,导致APT和二次离子质谱(SIMS)之间的负载较大。尽管如此,我们建议将31 Da标记为31 P +,以进行较小的P变异以进行APT分析。
更新日期:2019-10-30
down
wechat
bug