当前位置: X-MOL 学术Radiophys. Quantum Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stretching, Amplification, and Compression of Microwave Pulses Using Helically Corrugated Waveguides
Radiophysics and Quantum Electronics ( IF 0.8 ) Pub Date : 2019-12-01 , DOI: 10.1007/s11141-020-09993-z
N. S. Ginzburg , L. A. Yurovsky , M. N. Vilkov , I. V. Zotova , A. S. Sergeev , S. V. Samsonov , I. V. Yakovlev

We demonstrate the possible implementation of the chirped pulse amplification (CPA) method, which is widely used in optics, for the microwave frequency band. This method is based on the preliminary elongation of the incident pulse in the stretcher, sequential amplification of spectral components in a wideband amplifier, and final compression in a line with negative dispersion (compressor). A circuit is considered in which multifold, helically corrugated waveguides are used as an operating space in each section, including a stretcher, an amplifier, and a compressor. The dispersion characteristics of such waveguides can vary significantly when its geometrical parameters are changed, which makes it possible to ensure optimal dispersion characteristics in the stretcher and compressor, as well as the largest gain bandwidth in the amplifier. In addition, these dispersive elements allow us to avoid spurious reflection of the signal due to the absence of a stopband in the operating frequency range. Simulations within the framework of the coupledwave approach showed the prospects of the circuit proposed. In particular, using an experimentally realized 30-GHz gyro-TWT, the peak power of a 200-ns, 300-W incident pulse can be increased up to 4 MW, which is about six times higher than the power of the driving electron beam. With direct amplification (in the absence of a stretcher and a compressor) of the specified incident pulse in the same gyro-TWT, the output peak power does not exceed 250 kW.

中文翻译:

使用螺旋波纹波导对微波脉冲进行拉伸、放大和压缩

我们展示了啁啾脉冲放大 (CPA) 方法的可能实现,该方法广泛用于光学,用于微波频段。该方法基于入射脉冲在展宽器中的初步拉长,在宽带放大器中光谱分量的顺序放大,以及在负色散(压缩器)线中的最终压缩。考虑一个电路,其中使用多重螺旋波纹波导作为每个部分的操作空间,包括一个扩展器、一个放大器和一个压缩器。当其几何参数改变时,这种波导的色散特性会发生显着变化,这使得可以确保扩展器和压缩器中的最佳色散特性以及放大器中的最大增益带宽。此外,由于工作频率范围内没有阻带,这些色散元件使我们能够避免信号的虚假反射。耦合波方法框架内的模拟显示了所提出电路的前景。特别是,使用实验实现的 30-GHz 陀螺-TWT,200-ns、300-W 入射脉冲的峰值功率可以增加到 4 MW,大约是驱动电子束功率的六倍. 在同一个陀螺-TWT 中直接放大指定的入射脉冲(在没有展宽器和压缩器的情况下),输出峰值功率不超过 250 kW。耦合波方法框架内的模拟显示了所提出电路的前景。特别是,使用实验实现的 30-GHz 陀螺-TWT,200-ns、300-W 入射脉冲的峰值功率可以增加到 4 MW,大约是驱动电子束功率的六倍. 在同一个陀螺-TWT 中直接放大指定的入射脉冲(在没有展宽器和压缩器的情况下),输出峰值功率不超过 250 kW。耦合波方法框架内的模拟显示了所提出电路的前景。特别是,使用实验实现的 30-GHz 陀螺-TWT,200-ns、300-W 入射脉冲的峰值功率可以增加到 4 MW,大约是驱动电子束功率的六倍. 在同一个陀螺-TWT 中直接放大指定的入射脉冲(在没有展宽器和压缩器的情况下),输出峰值功率不超过 250 kW。
更新日期:2019-12-01
down
wechat
bug