当前位置: X-MOL 学术Plasma Phys. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Description of Large-Scale Processes in the Near-Earth Space Plasma
Plasma Physics Reports ( IF 1.1 ) Pub Date : 2020-04-26 , DOI: 10.1134/s1063780x20030083
O. V. Mingalev , I. V. Mingalev , H. V. Malova , A. M. Merzlyi , V. S. Mingalev , O. V. Khabarova

Abstract

We suggest a solution of the problem of the description of magnetic and electric fields occurring during large-scale nonradiative processes in the collisionless space plasma. The key idea is that the quasi-neutrality condition and the field-aligned force equilibrium of electrons should be taken into account. Equations describing the plasma are divided into two parts, namely, a system of transport equations which describes the plasma motion, and a system of equations for fields. The fields are defined in the instantaneous action approximation via the current spatial distributions of hydrodynamic plasma parameters and boundary conditions obtained from the system of elliptic equations containing no partial time derivatives. Three forms of the generalized Ohm’s law corresponding to different levels of plasma magnetization are considered. It is shown that, depending on the form of a system of transport equations derived for each plasma component, five key variants of the equation system describing the plasma can be obtained from the three forms of the Ohm’s law. The first form of the generalized Ohm’s law refers to the general case in which all plasma components unmagnetized and the system of transport equations represents the Vlasov equations for each plasma component. The second form of the Ohm’s law corresponds to the case of unmagnetized ionic plasma components, while electrons are magnetized and their pressure tensor is expressed through their longitudinal and transverse pressures as well as through the magnetic field. In the latter case two variants of the system of transport equations are possible, and the ions are described by Vlasov equations in both of them. In the first variant, the electrons are described by the Vlasov equation in the drift approximation. In the second variant, the electrons are described by the system of Chew–Goldberger–Low equations of magnetogasdynamics. The third variant of Ohm’s law corresponds to the case in which all plasma components are magnetized, and the pressure tensor of each component is replaced by its expression through the longitudinal and transverse pressure, as well as through the magnetic field. In this case, two variants of the transport equation system are also possible. In the first variant, each component is described by the Vlasov equation in the drift approximation. In the second variant, each component is described by the system of the Chew–Goldberger–Low equations of magnetogasdynamics.


中文翻译:

近地空间等离子体中大规模过程的描述

摘要

我们建议解决描述无碰撞空间等离子体中大规模非辐射过程中发生的磁场和电场的问题。关键思想是应考虑准中性条件和电子的场取向力平衡。描述等离子体的方程分为两部分,即描述等离子体运动的传输方程系统和场方程组。通过流体动力等离子体参数的当前空间分布和从不包含部分时间导数的椭圆方程组获得的边界条件,以瞬时作用近似法定义这些场。考虑了对应于不同水平的磁化强度的三种形式的广义欧姆定律。结果表明,根据为每个等离子体成分导出的传输方程组的形式,可以从三种形式的欧姆定律中获得描述等离子体的方程组的五个关键变体。广义欧姆定律的第一种形式是指所有血浆成分均未磁化且传输方程组代表每个血浆成分的Vlasov方程的一般情况。欧姆定律的第二种形式对应于未磁化的离子等离子体成分的情况,而电子被磁化,其压力张量通过其纵向和横向压力以及磁场来表示。在后一种情况下,传输方程系统的两个变体是可能的,并且离子在两个方程中均由Vlasov方程描述。在第一变体中,电子通过漂移近似中的弗拉索夫方程来描述。在第二个变体中,电子由磁气动力学的Chew–Goldberger–Low方程组描述。欧姆定律的第三个变体对应于所有等离子体成分都被磁化的情况,每个成分的压力张量被其通过纵向和横向压力以及磁场的表达所代替。在这种情况下,运输方程系统的两个变体也是可能的。在第一个变体中,每个分量都由Vlasov方程在漂移近似中描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组来描述。电子由弗拉索夫方程在漂移近似中描述。在第二个变体中,电子由磁气动力学的Chew–Goldberger–Low方程组描述。欧姆定律的第三个变体对应于所有等离子体成分都被磁化的情况,每个成分的压力张量被其通过纵向和横向压力以及磁场的表达所代替。在这种情况下,运输方程系统的两个变体也是可能的。在第一变体中,每个分量由漂移近似中的弗拉索夫方程描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组来描述。电子由弗拉索夫方程在漂移近似中描述。在第二个变体中,电子由磁气动力学的Chew–Goldberger–Low方程组描述。欧姆定律的第三个变体对应于所有等离子体成分都被磁化的情况,每个成分的压力张量被其通过纵向和横向压力以及磁场的表达所代替。在这种情况下,运输方程系统的两个变体也是可能的。在第一变体中,每个分量由漂移近似中的弗拉索夫方程描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组描述。电子由磁气动力学的Chew–Goldberger–Low方程组描述。欧姆定律的第三个变体对应于所有等离子体成分都被磁化的情况,每个成分的压力张量被其通过纵向和横向压力以及磁场的表达所代替。在这种情况下,运输方程系统的两个变体也是可能的。在第一变体中,每个分量由漂移近似中的弗拉索夫方程描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组来描述。电子由磁气动力学的Chew–Goldberger–Low方程组描述。欧姆定律的第三个变体对应于所有等离子体成分都被磁化的情况,每个成分的压力张量被其通过纵向和横向压力以及磁场的表达所代替。在这种情况下,运输方程系统的两个变体也是可能的。在第一变体中,每个分量由漂移近似中的弗拉索夫方程描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组来描述。并且通过纵向和横向压力以及磁场通过其表达式替换每个组件的压力张量。在这种情况下,运输方程系统的两个变体也是可能的。在第一个变体中,每个分量都由Vlasov方程在漂移近似中描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组来描述。并且通过纵向和横向压力以及磁场通过其表达式替换每个组件的压力张量。在这种情况下,运输方程系统的两个变体也是可能的。在第一变体中,每个分量由漂移近似中的弗拉索夫方程描述。在第二个变体中,每个分量都由Chew–Goldberger–Low磁气动力学方程组描述。
更新日期:2020-04-26
down
wechat
bug