当前位置: X-MOL 学术Front. Inform. Technol. Electron. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A look at field manipulation and antenna design using 3D transformation electromagnetics and 2D surface electromagnetics
Frontiers of Information Technology & Electronic Engineering ( IF 3 ) Pub Date : 2020-04-01 , DOI: 10.1631/fitee.1900489
Peng-fei Zhang , Yu-kai Yan , Ying Liu , Raj Mittra

While many techniques have been developed for the design of different types of antennas, such as wire antenna, patch antenna, lenses, and reflectors, these cannot be said general-purpose strategies for the synthesis and design of antennas to achieve the performance characteristics specified by users. Recently, there has been an increasing need for the development of antenna design techniques because of the advent of 5G and a variety of space, defense, biological, and similar applications, for which a robust and general-purpose design tool is not to be developed. The main objective of this study is to take a look at antenna design from the field manipulation point of view, which has the potential to partially fulfill this need. We review the existing field manipulation techniques, including field transformation methods based on Maxwell’s and wave equations, point out some limitations of these techniques, and then present ways to improve the performance of these methods. Next, we introduce an alternative approach for field manipulation based on two-dimensional (2D) metasurfaces, and present laws of the generalized reflection and refraction that are based on 2D surface electromagnetics. Then, we explore how to overcome the limitations of conventional reflection and refraction processes that are strictly bounded by the critical angle. Finally, we provide some application examples of field manipulation methods in the antenna design, with a view on developing a general-purpose strategy for antenna design for future communication.



中文翻译:

看一下使用3D转换电磁学和2D表面电磁学的场操纵和天线设计

尽管已经开发出许多技术来设计不同类型的天线,例如线形天线,贴片天线,透镜和反射器,但不能说这些是合成和设计天线以实现由以下功能指定的性能特征的通用策略:用户。最近,由于5G的出现以及各种太空,国防,生物和类似应用的发展,对天线设计技术的需求日益增长,而针对这些应用,将不会开发出功能强大的通用设计工具。 。这项研究的主要目的是从现场操纵的角度看待天线设计,这有可能部分满足这一需求。我们回顾了现有的现场操纵技术,包括基于麦克斯韦方程和波动方程的场转换方法,指出了这些技术的局限性,然后提出了改善这些方法性能的方法。接下来,我们介绍一种基于二维(2D)超表面的场操纵方法,并介绍基于2D表面电磁学的广义反射和折射定律。然后,我们探索如何克服传统的反射和折射过程的局限性,这些局限性受到临界角的严格限制。最后,我们提供了一些天线设计中的场操纵方法的应用示例,以期为天线设计开发通用策略,以便将来进行通信。然后提出改善这些方法性能的方法。接下来,我们介绍一种基于二维(2D)超表面的场操纵方法,并介绍基于2D表面电磁学的广义反射和折射定律。然后,我们探索如何克服常规反射和折射过程的局限性,这些局限性受到临界角的严格限制。最后,我们提供了一些天线设计中的场操纵方法的应用示例,以期为天线设计开发通用策略,以便将来进行通信。然后提出改善这些方法性能的方法。接下来,我们介绍一种基于二维(2D)超表面的场操纵方法,并介绍基于2D表面电磁学的广义反射和折射定律。然后,我们探索如何克服传统的反射和折射过程的局限性,这些限制受到临界角的严格限制。最后,我们提供了一些天线设计中的场操纵方法的应用示例,以期为天线设计开发通用策略,以便将来进行通信。并提出了基于2D表面电磁学的广义反射和折射定律。然后,我们探索如何克服传统的反射和折射过程的局限性,这些局限性受到临界角的严格限制。最后,我们提供了一些天线设计中的场操纵方法的应用实例,以期为天线设计开发通用策略,以便将来进行通信。并提出了基于2D表面电磁学的广义反射和折射定律。然后,我们探索如何克服常规反射和折射过程的局限性,这些局限性受到临界角的严格限制。最后,我们提供了一些天线设计中的场操纵方法的应用示例,以期为天线设计开发通用策略,以便将来进行通信。

更新日期:2020-04-18
down
wechat
bug