当前位置: X-MOL 学术Int. J. Micro. Air Veh. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism
International Journal of Micro Air Vehicles ( IF 1.4 ) Pub Date : 2019-01-01 , DOI: 10.1177/1756829319861371
Hoang Vu Phan 1, 2 , Steven Aurecianus 3 , Taesam Kang 3 , Hoon Cheol Park 1, 2
Affiliation  

For an insect-like tailless flying robot, flapping wings should be able to produce control force as well as flight force to keep the robot staying airborne. This capability requires an active control mechanism, which should be integrated with lightweight microcontrol actuators that can produce sufficient control torques to stabilize the robot due to its inherent instability. In this work, we propose a control mechanism integrated in a hover-capable, two-winged, flapping-wing, 16.4 g flying robot (KUBeetle-S) that can simultaneously change the wing stroke-plane and wing twist. Tilting the stroke plane causes changes in the direction of average thrust and the wing twist distribution to produce control torques for pitch and roll. For yaw (heading change), root spars of left and right wings are adjusted asymmetrically to change the wing twist during flapping motion, resulting in yaw torque generation. Changes in wing kinematics were validated by measuring wing kinematics using three synchronized high-speed cameras. We then performed a series of experiments using a six-axis force/torque load cell to evaluate the effectiveness of the control mechanism via torque generation. We prototyped the robot by integrating the control mechanism with sub-micro servos as control actuators and flight control board. Free flight tests were finally conducted to verify the possibility of attitude control.

中文翻译:

KUBeetle-S:一种昆虫状、无尾、可悬停的机器人,可以通过低扭矩控制机制飞行

对于像昆虫一样的无尾飞行机器人,拍打翅膀应该能够产生控制力和飞行力,使机器人保持在空中。这种能力需要一个主动控制机制,它应该与轻量级的微控制执行器集成,由于其固有的不稳定性,可以产生足够的控制扭矩来稳定机器人。在这项工作中,我们提出了一种集成在具有悬停能力的双翼扑翼 16.4 g 飞行机器人 (KUBeetle-S) 中的控制机制,该机器人可以同时改变机翼行程平面和机翼扭曲。倾斜行程平面会导致平均推力方向和机翼扭曲分布发生变化,从而产生俯仰和滚转的控制扭矩。对于偏航(航向改变),左右翼根翼梁不对称调整,以改变扑翼运动过程中的机翼扭曲,从而产生偏航扭矩。通过使用三个同步高速摄像机测量机翼运动学来验证机翼运动学的变化。然后,我们使用六轴力/扭矩称重传感器进行了一系列实验,以通过扭矩生成评估控制机制的有效性。我们通过将控制机构与作为控制执行器和飞行控制板的亚微伺服器集成在一起,对机器人进行了原型设计。最后进行了自由飞行试验,以验证姿态控制的可能性。然后,我们使用六轴力/扭矩称重传感器进行了一系列实验,以通过扭矩生成评估控制机制的有效性。我们通过将控制机构与作为控制执行器和飞行控制板的亚微伺服器集成在一起,对机器人进行了原型设计。最后进行了自由飞行试验,以验证姿态控制的可能性。然后,我们使用六轴力/扭矩称重传感器进行了一系列实验,以通过扭矩生成评估控制机制的有效性。我们通过将控制机构与作为控制执行器和飞行控制板的亚微伺服器集成在一起,对机器人进行了原型设计。最后进行了自由飞行试验,以验证姿态控制的可能性。
更新日期:2019-01-01
down
wechat
bug