当前位置: X-MOL 学术Waste Manag. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impacts of non-oxidative torrefaction conditions on the fuel properties of indigenous biomass (bagasse).
Waste Management & Research ( IF 3.9 ) Pub Date : 2020-04-29 , DOI: 10.1177/0734242x20916843
Muhammad Shehzad 1 , Anam Asghar 1 , Naveed Ramzan 1 , Umair Aslam 1 , Mustapha Mohammed Bello 2
Affiliation  

Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.

中文翻译:

非氧化烘焙条件对本地生物质(甘蔗渣)的燃料特性的影响。

生物质被认为是世界上最大的可再生能源。然而,其某些固有的特性,例如吸湿性,较低的能量含量,较低的质量密度和储存时的生物降解,阻碍了其在能量产生过程中的广泛应用。焙烘是一种在非氧化环境中于200-300°C进行的热化学过程,可以解决生物质的这些固有问题。在这项工作中,甘蔗渣的焙烧是在台式规模的管式反应器中于250°C和275°C进行的,停留时间为30、60和90分钟。研究了焙烧条件对元素组成,质量产率,能量产率,氧/碳(O / C)和氢/碳(H / C)比,较高的热值和结构组成的影响,并将其与市售的塔尔6'和' 隧道C'煤。根据目标质量和能量产率分别为80%和90%的目标,最佳工艺条件证明是250°C和30分钟。在275°C和90分钟的条件下进行甘蔗渣的焙烧,将甘蔗渣中的碳含量提高到58.14%,并导致23.84 MJ / kg的高发热量。烘焙后的蔗渣的结构和热分析表明,水分,非结构性碳水化合物和半纤维素减少了,这导致了蔗渣中的疏水性并提高了其能量值。这些发现表明,烘焙可以是一种可持续的预处理过程,可以改善生物质作为能源生产过程的原料的燃料和结构特性。最佳工艺条件证明是250°C和30分钟。在275°C和90分钟的条件下进行甘蔗渣的焙烧将甘蔗渣中的碳含量提高到58.14%,并导致23.84 MJ / kg的高发热量。烘焙后的蔗渣的结构和热分析表明,水分,非结构性碳水化合物和半纤维素减少了,这导致了蔗渣中的疏水性并提高了其能量值。这些发现表明,烘焙可以是一种可持续的预处理过程,可以改善生物质作为能源生产过程的原料的燃料和结构特性。最佳工艺条件证明是250°C和30分钟。在275°C和90分钟的条件下进行甘蔗渣的焙烧,将甘蔗渣中的碳含量提高到58.14%,并导致23.84 MJ / kg的高发热量。烘焙后的蔗渣的结构和热分析表明,水分,非结构性碳水化合物和半纤维素减少了,这导致了蔗渣中的疏水性并提高了其能量值。这些发现表明,烘焙可以是一种可持续的预处理过程,可以改善生物质作为能源生产过程的原料的燃料和结构特性。烘焙后的蔗渣的结构和热分析表明,水分,非结构性碳水化合物和半纤维素减少了,这导致了蔗渣中的疏水性并提高了其能量值。这些发现表明,烘焙可以是一种可持续的预处理过程,可以改善生物质作为能源生产过程的原料的燃料和结构特性。烘焙后的蔗渣的结构和热分析表明,水分,非结构性碳水化合物和半纤维素减少了,这导致了蔗渣中的疏水性并提高了其能量值。这些发现表明,烘焙可以是一种可持续的预处理过程,可以改善生物质作为能源生产过程的原料的燃料和结构特性。
更新日期:2020-04-29
down
wechat
bug