当前位置: X-MOL 学术Mach. Vis. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A morphological approach to piecewise constant active contour model incorporated with the geodesic edge term
Machine Vision and Applications ( IF 3.3 ) Pub Date : 2020-04-28 , DOI: 10.1007/s00138-020-01083-4
Song Yu , Wu Yiquan

Traditional level set-based image segmentation method has to solve the level set evolution equation which is the Euler–Lagrange equation of the energy functional defined on the image domain. Solving level set evolution equation is very time-consuming, and reinitialization is usually needed. The level set evolution equation can also be solved by mathematical morphology. The morphological implementation is very simple, fast and stable. The piecewise constant active contour model incorporated with the geodesic edge term is a hybrid active contour model which combines two active contour models which are active contour model without edges and geodesic active contour model. In this paper, the mathematical morphology-based level set evolution method is applied to the piecewise constant active contour model incorporated with the geodesic edge term. The curvature morphological operator is also improved. Experimental results show that, compared with the original piecewise constant active contour model incorporated the geodesic edge term, the new mathematical morphology-based model can segment images more accurately and there are significant gains in simplicity, speed and stability. The new mathematical morphology-based model is also compared to morphological piecewise constant active contour model, morphological geodesic active contour model, traditional piecewise constant active contour model and two other active contour models. Results show that the proposed method gets the segmentation result with faster speed and higher accuracy.

中文翻译:

结合测地线边缘项的分段恒定主动轮廓模型的形态学方法

传统的基于水平集的图像分割方法必须求解水平集演化方程,该方程是在图像域上定义的能量泛函的Euler–Lagrange方程。解决水平集演化方程非常耗时,通常需要重新初始化。水平集演化方程也可以通过数学形态学求解。形态实施非常简单,快速和稳定。结合了测地线边缘项的分段恒定活动轮廓模型是一种混合活动轮廓模型,它结合了两个活动轮廓模型,这两个活动轮廓模型是没有边线的活动轮廓模型和测地活动轮廓模型。本文将基于数学形态学的水平集演化方法应用于结合测地线边缘项的分段恒定活动轮廓模型。曲率形态算子也得到了改善。实验结果表明,与结合了测地线边缘项的原始分段恒定主动轮廓模型相比,新的基于数学形态学的模型可以更精确地分割图像,并且在简单性,速度和稳定性方面都有显着提高。还将新的基于形态学的数学模型与形态学分段恒定活动轮廓模型,形态测地线活动轮廓模型,传统分段恒定活动轮廓模型和其他两个活动轮廓模型进行了比较。结果表明,所提方法得到的分割结果具有更快的速度和更高的精度。与结合了测地线边缘项的原始分段恒定主动轮廓模型相比,新的基于数学形态学的模型可以更精确地分割图像,并且在简单性,速度和稳定性方面都有显着提高。还将新的基于形态学的数学模型与形态学分段恒定活动轮廓模型,形态测地线活动轮廓模型,传统分段恒定活动轮廓模型和其他两个活动轮廓模型进行了比较。结果表明,所提方法得到的分割结果具有更快的速度和更高的精度。与结合了测地线边缘项的原始分段恒定主动轮廓模型相比,新的基于数学形态学的模型可以更精确地分割图像,并且在简单性,速度和稳定性方面都有显着提高。还将新的基于形态学的数学模型与形态学分段恒定活动轮廓模型,形态测地线活动轮廓模型,传统分段恒定活动轮廓模型和其他两个活动轮廓模型进行了比较。结果表明,所提方法得到的分割结果具有更快的速度和更高的精度。还将新的基于形态学的数学模型与形态学分段恒定活动轮廓模型,形态测地线活动轮廓模型,传统分段恒定活动轮廓模型和其他两个活动轮廓模型进行了比较。结果表明,所提方法得到的分割结果具有更快的速度和更高的精度。还将新的基于形态学的数学模型与形态学分段恒定活动轮廓模型,形态测地线活动轮廓模型,传统分段恒定活动轮廓模型和其他两个活动轮廓模型进行了比较。结果表明,所提方法得到的分割结果具有更快的速度和更高的精度。
更新日期:2020-04-28
down
wechat
bug