当前位置: X-MOL 学术Comput. Theor. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing of Benzothiazole based Non-fullerene Acceptor (NFA) Molecules for Highly Efficient Organic Solar Cells
Computational and Theoretical Chemistry ( IF 2.8 ) Pub Date : 2020-04-26 , DOI: 10.1016/j.comptc.2020.112833
Rao Aqil Shehzad , Javed Iqbal , Muhammad Usman Khan , Riaz Hussain , Hafiz Muhammad Asif Javed , Ateeq ur Rehman , Muhammad Usman Alvi , Muhammad Khalid

To enhance the efficiency of organic solar cells (OSCs), five non-fullerene π-conjugated acceptor molecules namely BTM1, BTM2, BTM3, BTM4 and BTM5 are designed from recently reported 16.5% efficient acceptor molecule BTP-Cl. The molecules in the present quantum chemical investigation consist of benzothiazole (BT) core with different chemical species on the terminal side. The optoelectronic study of BTM1-BTM5 reveals that BTM3 and BTM4 molecules are superior with respect to absorption range found at the wavelengths of 780 and 791 nm as compared to 746 nm of reference molecule BTP-Cl. Frontier molecular orbital (FMO) and transition density matrix (TDM) analysis are performed that give basic information about the distribution of charges among investigated molecules. All investigated molecules exhibit charge density spread over the entire molecules. The BTM4 and BTM5 molecules efficiently transfer their electron densities from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) with narrow bandgaps of 1.86 eV and 2.14 eV respectively. The electron mobility for BTM3 (0.00527), BTM4 (0.005820) and BTM5 (0.00539) are found less than BTP-Cl (0.00643). Similarly, BTM5 gives the least value of hole mobility (0.00558) as compared to BTP-Cl (0.00803). The binding energies of these molecules are also observed less (0.28 eV, 0.29 eV and 0.33 eV for BTM3, BTM4 and BTM5) in gas phase than BTP-Cl (0.35 eV). Also, BTM5 is tested with donor polymer PTB7-Th that provides further evidence for their interactions. It turned out that the structural tailoring at terminals can tune effectively the frontier molecular orbital energy levels, band gap, absorption spectra, open-circuit voltage, reorganization energy and binding energy value in investigated molecules. Our results suggest that the investigated molecules can serve as fine acceptor materials. Additionally, some investigated molecules can also be used as a hole and/or electron transport materials for OSCs.



中文翻译:

用于高效有机太阳能电池的基于苯并噻唑的非富勒烯受体(NFA)分子的设计

为了提高有机太阳能电池(OSC)的效率,从最近报道的16.5%有效受体分子BTP-C1设计了五个非富勒烯π共轭受体分子,即BTM1BTM2BTM3BTM4BTM5 本量子化学研究中的分子由在末端侧具有不同化学物种的苯并噻唑(BT)核组成。BTM1-BTM5的光电研究表明,与比分子BTP-Cl的746 nm相比,BTM3BTM4分子在780和791 nm波长处发现的吸收范围更好。。进行了前沿分子轨道(FMO)和跃迁密度矩阵(TDM)分析,可提供有关所研究分子之间电荷分布的基本信息。所有研究的分子均表现出分布在整个分子上的电荷密度。的BTM4BTM5分子有效地传送他们的电子密度从最高有1.86 eV和2.14电子伏特的带隙窄分别占据分子轨道(HOMO)到最低未占分子轨道(LUMO)。发现BTM3(0.00527),BTM4(0.005820)和BTM5(0.00539)的电子迁移率小于BTP-Cl(0.00643)。同样,BTM5BTP-Cl(0.00803)相比,给出的空穴迁移率值最小(0.00558)。在气相中还观察到这些分子的结合能(对于BTM3BTM4BTM50.28eV0.29eV0.33eV)小于BTP-Cl0.35eV)。此外,BTM5还经过供体聚合物PTB7-Th的测试为他们的互动提供了进一步的证据。结果表明,末端的结构调整可以有效地调节研究分子的前沿分子轨道能级,带隙,吸收光谱,开路电压,重组能和结合能值。我们的结果表明,所研究的分子可以用作精细的受体材料。另外,一些研究过的分子也可用作OSC的空穴和/或电子传输材料。

更新日期:2020-04-26
down
wechat
bug