当前位置: X-MOL 学术Friction › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measurement of bit-rock interface temperature and wear rate of the tungsten carbide drill bit during rotary drilling
Friction ( IF 6.8 ) Pub Date : 2020-04-25 , DOI: 10.1007/s40544-019-0330-2
Vijay Kumar Shankar , Bijay Mihir Kunar , Chivukula Suryanarayana Murthy , M. R. Ramesh

Rock drilling is an essential operation in mining industries. Temperature at the bit-rock interface plays a major role in the wear rate of the drill bit. This paper primarily focuses on the wear rate of tungsten carbide (WC) drill bit and the interrelationship between temperature and wear rate during rotary drilling operations conducted using a computer numerical control (CNC) machine. The interrelationship between the temperature and wear rate was studied with regard to three types of rock samples, i.e., fine-grained sandstone (FG) of uniaxial compressive strength (UCS) that is 17.83 MPa, medium-grained sandstone (MG) of UCS that is 13.70 MPa, and fine-grained sandstone pink (FGP) of UCS that is 51.67 MPa. Wear rate of the drill bit has been measured using controlled parameters, i.e., drill bit diameter (6, 8, 10, 12, and 16 mm), spindle speed (250, 300, 350, 400, and 450 rpm), and penetration rate (2, 4, 6, 8, and 10 mm/min), respectively. Further, a fully instrumented laboratory drilling set-up was utilized. The weight of each bit was measured after the bit reached 30 mm depth in each type of the rock sample. Furthermore, effects of the bit-rock interface temperature and operational parameters on wear rate of the drill bits were examined. The results show that the wear rate of drill bits increased with an increase in temperature for all the bit-rock combinations considered. This is due to the silica content of the rock sample, which leads to an increase in the frictional heat between the bit-rock interfaces. However, in case of medium-grained sandstone, the weight percentage (wt%) of SiO2 is around 7.23 wt%, which presents a very low wear rate coefficient of 6.33×10−2 mg/(N·m). Moreover, the temperature rise during drilling is also minimum, i.e., around 74 °C, in comparison to that of fine-grained sandstone and fine-grained sandstone pink. In addition, this paper develops the relationship between temperature and wear rate characteristics by employing simple linear regression analysis.

中文翻译:

旋转钻孔过程中碳化钨钻头的钻头界面温度和磨损率的测量

凿岩是采矿业中必不可少的作业。钻头-岩石界面处的温度在钻头的磨损率中起主要作用。本文主要关注碳化钨(WC)钻头的磨损率以及在使用计算机数控(CNC)机器进行的旋转钻孔操作过程中温度与磨损率之间的相互关系。针对三种类型的岩石样品研究了温度与磨损率之间的相互关系,即单轴抗压强度(UCS)为17.83 MPa的细粒砂岩(FG),UCS的中粒砂岩(MG)分别为为13.70 MPa,UCS的细粒砂岩粉(FGP)为51.67 MPa。钻头的磨损率已使用受控参数进行测量,即钻头直径(6、8、10、12和16 mm),主轴转速(250、300、350、400和450 rpm)和穿透速度(2、4、6、8和10 mm / min)。此外,还使用了仪器齐全的实验室钻探装置。在每种类型的岩石样品中,钻头达到30 mm的深度后,测量每个钻头的重量。此外,检查了钻头-岩石界面温度和操作参数对钻头磨损率的影响。结果表明,对于所有考虑的钻头-岩石组合,钻头的磨损率均随温度的升高而增加。这归因于岩石样品中的二氧化硅含量,这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)分别。此外,还使用了仪器齐全的实验室钻探装置。在每种类型的岩石样品中,钻头达到30 mm的深度后,测量每个钻头的重量。此外,检查了钻头-岩石界面温度和操作参数对钻头磨损率的影响。结果表明,对于所有考虑的钻头-岩石组合,钻头的磨损率均随温度的升高而增加。这归因于岩石样品中的二氧化硅含量,这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)分别。此外,还使用了仪器齐全的实验室钻探装置。在每种类型的岩石样品中,钻头达到30 mm的深度后,测量每个钻头的重量。此外,检查了钻头-岩石界面温度和操作参数对钻头磨损率的影响。结果表明,对于所有考虑的钻头-岩石组合,钻头的磨损率均随温度的升高而增加。这归因于岩石样品中的二氧化硅含量,这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)此外,检查了钻头-岩石界面温度和操作参数对钻头磨损率的影响。结果表明,对于所有考虑的钻头-岩石组合,钻头的磨损率均随温度的升高而增加。这归因于岩石样品中的二氧化硅含量,这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)此外,检查了钻头-岩石界面温度和操作参数对钻头磨损率的影响。结果表明,对于所有考虑的钻头-岩石组合,钻头的磨损率均随温度的升高而增加。这归因于岩石样品中的二氧化硅含量,这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)这导致钻头-岩石界面之间的摩擦热增加。但是,对于中粒砂岩,SiO的重量百分比(wt%)2约为7.23 wt%,这表明磨损率系数非常低,为6.33×10 -2 mg /(N·m)。而且,与细粒砂岩和细粒砂岩粉红色相比,钻孔过程中的温度升高也最小,即约74°C。此外,本文通过简单的线性回归分析来建立温度与磨损率特性之间的关系。
更新日期:2020-04-25
down
wechat
bug