当前位置: X-MOL 学术Fibers Polym. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
RSM and ANN Modeling for Production of Newbouldia Laevies Fibre and Recycled High Density Polyethylene Composite: Multi Objective Optimization Using Genetic Algorithm
Fibers and Polymers ( IF 2.5 ) Pub Date : 2020-04-23 , DOI: 10.1007/s12221-020-9597-1
Chidozie Chukwuemeka Nwobi-Okoye , Martins Kenechukwu Anyichie , Clement Uche Atuanya

In this study response surface methodology (RSM), artificial neural network (ANN) and non-dominated sorting genetic algorithm-II (NSGA-II) were used for modeling and multi objective optimization of Newbouldia Laevies Fibre and recycled high density polyethylene (RHDPE) composite for fiberboard application. The fiberboard properties optimized were modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding (IB), thickness swelling (TS) and water absorption (WA) whose values vary in response to changes in production process variables namely: Fibre/RHDPE (%), press pressure, press time and temperature. An experimental design using central composite design (CCD) was used to develop an RSM model for modeling the variations in physical and mechanical properties of the fiberboard in response to variations in process parameters. An ANN model was equally used to predict the properties of the fiberboard. Subsequently the ANN was used as the fitness function for multi objective optimization of the fiberboard using NSGA-II. A comparative algorithm was later developed with a traditional multi objective optimization algorithm known as desirability function using the RSM model. The results of the study showed that RSM and ANN effectively modeled the properties of the fiberboard. The optimized Pareto front of the NSGA-II algorithm was found to be an excellent design guide for practical applications of the composite. The superiority of NSGA-II algorithm over the desirability function as a multi objective optimization tool was demonstrated.



中文翻译:

产Newbouldia Laevies纤维和再生高密度聚乙烯复合材料的RSM和ANN建模:使用遗传算法的多目标优化

在这项研究中,使用响应面方法(RSM),人工神经网络(ANN)和非主导排序遗传算法-II(NSGA-II)对Newbouldia Laevies纤维和再生高密度聚乙烯(RHDPE)进行建模和多目标优化用于纤维板的复合材料。优化的纤维板特性是断裂模量(MOR),弹性模量(MOE),内部粘结(IB),厚度膨胀(TS)和吸水率(WA),其值会随着生产过程变量(即纤维)的变化而变化。 / RHDPE(%),按压力,按时间和温度。使用中央复合设计(CCD)进行的实验设计用于开发RSM模型,以对纤维板物理和机械性能的变化进行建模,以响应工艺参数的变化。ANN模型同样用于预测纤维板的性能。随后,将人工神经网络用作适应函数,使用NSGA-II对纤维板进行多目标优化。后来,使用RSM模型,使用称为期望函数的传统多目标优化算法开发了一种比较算法。研究结果表明,RSM和ANN有效地模拟了纤维板的性能。发现NSGA-II算法的优化Pareto前沿是复合材料实际应用的出色设计指南。证明了NSGA-II算法相对于作为多目标优化工具的期望函数的优越性。随后,将人工神经网络用作适应函数,使用NSGA-II对纤维板进行多目标优化。后来,使用RSM模型,使用称为需求函数的传统多目标优化算法开发了一种比较算法。研究结果表明,RSM和ANN有效地模拟了纤维板的性能。发现NSGA-II算法的优化Pareto前沿是复合材料实际应用的出色设计指南。证明了NSGA-II算法相对于作为多目标优化工具的期望函数的优越性。随后,将人工神经网络用作适应函数,使用NSGA-II对纤维板进行多目标优化。后来,使用RSM模型,使用称为需求函数的传统多目标优化算法开发了一种比较算法。研究结果表明,RSM和ANN有效地模拟了纤维板的性能。发现NSGA-II算法的优化Pareto前沿是复合材料实际应用的出色设计指南。证明了NSGA-II算法相对于作为多目标优化工具的期望函数的优越性。研究结果表明,RSM和ANN有效地模拟了纤维板的性能。发现NSGA-II算法的优化Pareto前沿是复合材料实际应用的出色设计指南。证明了NSGA-II算法相对于作为多目标优化工具的期望函数的优越性。研究结果表明,RSM和ANN有效地模拟了纤维板的性能。发现NSGA-II算法的优化Pareto前沿是复合材料实际应用的出色设计指南。证明了NSGA-II算法相对于作为多目标优化工具的期望函数的优越性。

更新日期:2020-04-23
down
wechat
bug