当前位置: X-MOL 学术J. Environ. Radioact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cavity-melt partitioning of refractory radionuclides and implications for detecting underground nuclear explosions.
Journal of Environmental Radioactivity ( IF 2.3 ) Pub Date : 2020-04-22 , DOI: 10.1016/j.jenvrad.2020.106269
Charles R Carrigan 1 , Yunwei Sun 1 , Eric Pili 2 , Daniel R Neuville 3 , Tarabay Antoun 1
Affiliation  

Isotopic ratios of radioxenon captured in the atmosphere can be indicators of the occurrence of an underground nuclear explosion. However, civilian sources of xenon isotopes, such as medical isotope production facilities and nuclear reactors, can interfere with detection of signals associated with nuclear testing, according to a standard model of the evolution of radioxenon isotopic abundances in a nuclear explosion cavity. We find that this standard model is idealized by not including the effects of physical processes resulting in the partitioning of the radionuclide inventory between a gas phase and rock melt created by the detonation and by ignoring seepage or continuous leakage of gases from the cavity or zone of collapse. Application of more realistic assumptions about the state of the detonation cavity results in isotopic activity ratios that differ from the civilian background more than the idealized standard model suggests, while also reducing the quantity of radioxenon available for atmospheric release and subsequent detection. Our simulations indicate that the physical evolution of the detonation cavity during the post-detonation partitioning process strongly influences isotopic evolution in the gas phase. Collapse of the cavity potentially has the greatest effect on partitioning of the refractory fission products that are precursors to radioxenon. The model allows for the possibility that post-detonation seismicity can be used to predict isotopic evolution.

中文翻译:

难熔放射性核素的熔体分配及其对探测地下核爆炸的意义。

在大气中捕获的放射性氙的同位素比可以指示地下核爆炸的发生。但是,根据核爆炸腔中放射性氙同位素丰度演变的标准模型,诸如医疗同位素生产设施和核反应堆之类的民用氙同位素源可能会干扰与核试验有关的信号检测。我们发现该标准模型是理想的,因为它不包括物理过程的影响,因为物理过程的影响导致了放射性核素的存量在气相和由爆炸产生的岩石熔体之间分配,并且忽略了气体从腔体或腔体的渗漏或连续泄漏。坍方。关于爆轰腔状态的更现实假设的应用导致同位素活性比与民用背景的差异超过理想标准模型所建议的数值,同时还减少了可用于大气释放和随后检测的放射性氙的数量。我们的模拟表明,爆炸后分配过程中爆炸腔的物理演变强烈影响气相中的同位素演变。空腔的塌陷可能对作为放射性氙的前体的耐火裂变产物的分配产生最大的影响。该模型考虑了爆炸后地震活动性可用于预测同位素演化的可能性。同时还减少了可用于大气释放和后续检测的放射性氙的数量。我们的模拟表明,爆炸后分配过程中爆炸腔的物理演变强烈影响气相中的同位素演变。空腔的塌陷可能对作为放射性氙的前体的耐火裂变产物的分配产生最大的影响。该模型考虑了爆炸后地震活动性可用于预测同位素演化的可能性。同时减少了可用于大气释放和后续检测的放射性氙的数量。我们的模拟表明,爆炸后分配过程中爆炸腔的物理演变强烈影响气相中的同位素演变。空腔的塌陷可能对作为放射性氙的前体的耐火裂变产物的分配产生最大的影响。该模型考虑了爆炸后地震活动性可用于预测同位素演化的可能性。空腔的塌陷可能对作为放射性氙的前体的耐火裂变产物的分配产生最大的影响。该模型考虑了爆炸后地震活动性可用于预测同位素演化的可能性。空腔的塌陷可能对作为放射性氙的前体的耐火裂变产物的分配产生最大的影响。该模型考虑了爆炸后地震活动性可用于预测同位素演化的可能性。
更新日期:2020-04-23
down
wechat
bug