当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How the energy budget scales from the laboratory to the crust in accretionary wedges
Earth and Planetary Science Letters ( IF 5.3 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.epsl.2020.116276
Jessica McBeck , Michele Cooke , François Renard

Abstract We investigate the scaling properties of the mechanical energy budget in accretionary prisms across five orders of magnitude, from the laboratory centimeter-scale to crustal kilometer-scale. We first develop numerical models that match the length scale, fault and material properties, surface topography, and fault geometries observed in scaled dry sand accretionary experiments. As we systematically increase the spatial dimensions of the numerical models by orders of magnitude, we calculate each component of the energy budget both before and after the first thrust fault pair develops. The increase of both the bulk stiffness and slip weakening distance from the laboratory- to crustal-scale produces a scale-invariant partitioning of the energy budget, relative to the total work done on the system. The components scale as power laws with exponents of three. Consequently, accurate laboratory simulations of the energetics of deformation within crustal accretionary wedges require careful scaling of the stiffness and slip weakening distance. Preceding thrust fault development at both the laboratory and crustal scale, the internal work consumes the largest portion of the budget (67-77%) and frictional work consumes the next largest portion (17-27%). Following thrusting, frictional work and internal work consume similar portions of the energy budget (38-50%). The sum of the remaining energy budget components, including gravitational work, seismic work, and the work of fracture propagation, consume

中文翻译:

能量收支如何从实验室扩展到增生楔中的地壳

摘要 我们研究了从实验室厘米尺度到地壳千米尺度的五个数量级的增生棱柱中机械能收支的标度特性。我们首先开发了数值模型,该模型与比例尺干砂增生实验中观察到的长度尺度、断层和材料特性、地表地形和断层几何形状相匹配。随着我们系统地按数量级增加数值模型的空间维度,我们计算了第一个逆冲断层对发展之前和之后能量收支的每个分量。从实验室到地壳尺度的体积刚度和滑动减弱距离的增加产生了能量预算的尺度不变分区,相对于在系统上完成的总工作。分量按指数为 3 的幂律进行缩放。因此,地壳增生楔内变形能量的精确实验室模拟需要仔细缩放刚度和滑动减弱距离。在实验室和地壳规模的逆冲断层发展之前,内部功消耗预算的最大部分(67-77%),摩擦功消耗第二大部分(17-27%)。在推力之后,摩擦功和内部功消耗能量预算的相似部分 (38-50%)。剩余能量收支分量的总和,包括重力功、地震功和裂缝扩展功,消耗 地壳增生楔内变形能量的精确实验室模拟需要仔细缩放刚度和滑动减弱距离。在实验室和地壳规模的逆冲断层发展之前,内部功消耗预算的最大部分(67-77%),摩擦功消耗第二大部分(17-27%)。在推力之后,摩擦功和内部功消耗能量预算的相似部分 (38-50%)。剩余能量收支分量的总和,包括重力功、地震功和裂缝扩展功,消耗 地壳增生楔内变形能量的精确实验室模拟需要仔细缩放刚度和滑动减弱距离。在实验室和地壳规模的逆冲断层发展之前,内部功消耗预算的最大部分(67-77%),摩擦功消耗第二大部分(17-27%)。在推力之后,摩擦功和内部功消耗能量预算的相似部分 (38-50%)。剩余能量收支分量的总和,包括重力功、地震功和裂缝扩展功,消耗 内部工作消耗预算的最大部分 (67-77%),摩擦工作消耗第二大部分 (17-27%)。在推力之后,摩擦功和内部功消耗能量预算的相似部分 (38-50%)。剩余能量收支分量的总和,包括重力功、地震功和裂缝扩展功,消耗 内部工作消耗预算的最大部分 (67-77%),摩擦工作消耗第二大部分 (17-27%)。在推力之后,摩擦功和内部功消耗能量预算的相似部分 (38-50%)。剩余能量收支分量的总和,包括重力功、地震功和裂缝扩展功,消耗
更新日期:2020-07-01
down
wechat
bug