当前位置: X-MOL 学术Prog. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the predictive capability of benthic species distribution models by incorporating oceanographic data – towards holistic ecological modelling of a submarine canyon
Progress in Oceanography ( IF 4.1 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.pocean.2020.102338
T.R.R. Pearman , K. Robert , A. Callaway , R. Hall , C. Lo Iacono , V.A.I. Huvenne

Submarine canyons are associated with increased biodiversity, including cold-water coral (CWC) colonies and reefs which are features of high conservation value that are under increasing anthropogenic pressure. Effective spatial management and conservation of these features requires accurate distribution maps and a deeper understanding of the processes that generate the observed distribution patterns. Predictive distribution modelling offers a powerful tool in the deep sea, where surveys are constrained by cost and technological capabilities. To date, predictive distribution modelling in canyons has focussed on integrating groundtruthed acoustically acquired datasets as proxies for environmental variables thought to influence faunal patterns. Physical oceanography is known to influence faunal patterns but has rarely been explicitly included in predictive distribution models of canyon fauna, thereby omitting key information required to adequately capture the species-environment relationships that form the basis of predictive distribution modelling. In this study, acoustic, oceanographic and biological datasets were integrated to undertake high-resolution predictions of benthic megafaunal diversity and CWC distribution within Whittard Canyon, North-East Atlantic. The main aim was to investigate which environmental variables best predict faunal patterns in canyons and to assess whether including oceanographic data improves predictive modelling. General additive models, random forests and boosted regression trees were used to build predictive maps for CWC occurrence, megafaunal abundance, species richness and biodiversity. To provide more robust predictions, ensemble techniques that summarise the variation in predictions and uncertainties between modelling approaches were applied to build final maps. Model performance improved with the inclusion of oceanographic data. Ensemble maps identified areas of elevated current speed that coincided with steep ridges and escarpment walls as the areas most likely to harbour CWCs and increased biodiversity, probably linked to local hydrodynamics interacting with topography to concentrate food resources. This study shows how incorporating oceanographic data into canyon models can broaden our understanding of processes generating faunal patterns and improve the mapping of features of conservation, supporting effective procedures for spatial ecosystem management.

中文翻译:

通过结合海洋学数据提高底栖物种分布模型的预测能力——实现海底峡谷的整体生态建模

海底峡谷与生物多样性的增加有关,包括冷水珊瑚 (CWC) 群落和珊瑚礁,它们是受到越来越大的人为压力的具有高保护价值的特征。这些特征的有效空间管理和保护需要准确的分布图和对生成观察到的分布模式的过程的更深入了解。预测分布建模为深海提供了一个强大的工具,在那里调查受到成本和技术能力的限制。迄今为止,峡谷中的预测分布建模侧重于整合真实的声学采集数据集,作为被认为会影响动物群模式的环境变量的代理。众所周知,物理海洋学会影响动物群模式,但很少被明确包含在峡谷动物群的预测分布模型中,因此忽略了充分捕获构成预测分布建模基础的物种-环境关系所需的关键信息。在这项研究中,整合了声学、海洋学和生物数据集,以对东北大西洋惠特德峡谷内的底栖巨型动物多样性和 CWC 分布进行高分辨率预测。主要目的是调查哪些环境变量最能预测峡谷中的动物群模式,并评估包括海洋数据是否能改进预测建模。通用加性模型、随机森林和增强回归树用于构建 CWC 发生、巨型动物丰度、物种丰富度和生物多样性。为了提供更可靠的预测,集成技术总结了建模方法之间的预测变化和不确定性,用于构建最终地图。随着海洋数据的加入,模型性能得到了提高。集合地图确定了与陡峭山脊和悬崖壁重合的水流速度升高的区域,这些区域最有可能拥有 CWC 和增加的生物多样性,这可能与当地流体动力学与地形相互作用以集中食物资源有关。这项研究表明,将海洋学数据纳入峡谷模型如何可以拓宽我们对动物区系模式产生过程的理解,并改善保护特征的绘图,支持空间生态系统管理的有效程序。为了提供更可靠的预测,集成技术总结了建模方法之间的预测变化和不确定性,用于构建最终地图。随着海洋数据的加入,模型性能得到了提高。集合地图确定了与陡峭的山脊和悬崖壁重合的水流速度升高的区域,这些区域最有可能拥有 CWC 和增加的生物多样性,这可能与当地流体动力学与地形相互作用以集中食物资源有关。这项研究表明,将海洋学数据纳入峡谷模型如何可以拓宽我们对动物区系模式产生过程的理解,并改善保护特征的绘图,支持空间生态系统管理的有效程序。为了提供更可靠的预测,集成技术总结了建模方法之间的预测变化和不确定性,用于构建最终地图。随着海洋数据的加入,模型性能得到了提高。集合地图确定了与陡峭的山脊和悬崖壁重合的水流速度升高的区域,这些区域最有可能拥有 CWC 和增加的生物多样性,这可能与当地流体动力学与地形相互作用以集中食物资源有关。这项研究表明,将海洋学数据纳入峡谷模型如何可以拓宽我们对动物区系模式产生过程的理解,并改善保护特征的绘图,支持空间生态系统管理的有效程序。综合技术总结了建模方法之间的预测变化和不确定性,用于构建最终地图。随着海洋数据的加入,模型性能得到了提高。集合地图确定了与陡峭的山脊和悬崖壁重合的水流速度升高的区域,这些区域最有可能拥有 CWC 和增加的生物多样性,这可能与当地流体动力学与地形相互作用以集中食物资源有关。这项研究表明,将海洋学数据纳入峡谷模型如何可以拓宽我们对动物区系模式产生过程的理解,并改善保护特征的绘图,支持空间生态系统管理的有效程序。综合技术总结了建模方法之间的预测变化和不确定性,用于构建最终地图。随着海洋数据的加入,模型性能得到了提高。集合地图确定了与陡峭山脊和悬崖壁重合的水流速度升高的区域,这些区域最有可能拥有 CWC 和增加的生物多样性,这可能与当地流体动力学与地形相互作用以集中食物资源有关。这项研究表明,将海洋学数据纳入峡谷模型如何可以拓宽我们对动物区系模式产生过程的理解,并改善保护特征的绘图,支持空间生态系统管理的有效程序。
更新日期:2020-05-01
down
wechat
bug